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Abstract

Topic models like latent Dirichlet allocation (LDA) provide a framework for analyzing

large datasets where observations are collected into groups. Although topic modeling

has been fruitfully applied to problems social science, biology, and computer vision,

it has been most widely used to model datasets where documents are modeled as

exchangeable groups of words. In this context, topic models discover topics, distribu-

tions over words that express a coherent theme like “business” or “politics.” While

one of the strengths of topic models is that they make few assumptions about the

underlying data, such a general approach sometimes limits the type of problems topic

models can solve.

When we restrict our focus to natural language datasets, we can use insights from

linguistics to create models that understand and discover richer language patterns. In

this thesis, we extend LDA in three different ways: adding knowledge of word mean-

ing, modeling multiple languages, and incorporating local syntactic context. These

extensions apply topic models to new problems, such as discovering the meaning of

ambiguous words, extend topic models for new datasets, such as unaligned multi-

lingual corpora, and combine topic models with other sources of information about

documents’ context.

In Chapter 2, we present latent Dirichlet allocation with WordNet (LDAWN),

an unsupervised probabilistic topic model that includes word sense as a hidden vari-

able. LDAWN replaces the multinomial topics of LDA with Abney and Light’s distri-

bution over meanings. Thus, posterior inference in this model discovers not only the

topical domains of each token, as in LDA, but also the meaning associated with each

token. We show that considering more topics improves the problem of word sense

disambiguation.

LDAWN allows us to separate the representation of meaning from how that mean-

ing is expressed as word forms. In Chapter 3, we extend LDAWN to allow meanings
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to be expressed using different word forms in different languages. In addition to the

disambiguation provided by LDAWN, this offers a new method of using topic models

on corpora with multiple languages.

In Chapter 4, we relax the assumptions of multilingual LDAWN. We present the

multilingual topic model for unaligned text (MuTo). Like multilingual LDAWN, it

is a probabilistic model of text that is designed to analyze corpora composed of

documents in multiple languages. Unlike multilingual LDAWN, which requires the

correspondence between languages to be painstakingly annotated, MuTo also uses

stochastic EM to simultaneously discover both a matching between the languages

while it simultaneously learns multilingual topics. We demonstrate that MuTo allows

the meaning of similar documents to to be recovered across languages.

In Chapter 5, we address a recurring problem that hindered the performance of the

models presented in the previous chapters: the lack of a local context. We develop the

syntactic topic model (STM), a non-parametric Bayesian model of parsed documents.

The STM generates words that are both thematically and syntactically constrained,

which combines the semantic insights of topic models with the syntactic information

available from parse trees. Each word of a sentence is generated by a distribution that

combines document-specific topic weights and parse-tree-specific syntactic transitions.

Words are assumed to be generated in an order that respects the parse tree. We

derive an approximate posterior inference method based on variational methods for

hierarchical Dirichlet processes, and we report qualitative and quantitative results on

both synthetic data and hand-parsed documents.

In Chapter 6, we conclude with a discussion of how the models presented in this

thesis can be applied in real world applications such as sentiment analysis and how

the models can be extended to capture even richer linguistic information from text.
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Chapter 1

Patterns of Word Usage: Topic

Models in Context

Most people are familiar with patterns of word usage. Patterns of how words are

written dictate how crossword puzzles and games of scrabble fit together. Patterns

of how words sound engage us through song and poetry, and the interplay between

meaning and sound both annoy and delight us through the creation of puns.

These intriguing patterns are not just the subject of lighthearted leisure; they also

are the foundation of serious academic study. Lexicographers investigate patterns of

words’ meaning in order to compose dictionaries. Morphologists’ understanding of

the internal structure of words helps uncover the history and structure of the world’s

languages. Syntax, how words are put together into sentences, allows computers to

correct your grammar and automatically answer questions like “what is the capital of

Botswana?”

Another way of looking at how words are used is at the document level. A document

presents a discrete unit of meaning that is relevant to how we often interact with text;

we usually think of text at the level of a book, a webpage, or a newspaper article

rather than at the word, sentence, or paragraph level. Because the Internet can be
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considered a large collection of documents, finding the documents that are relevant to

your interests is an important (and profitable) problem in search and advertising.

The question that this thesis asks is if the patterns studied in syntax, morphology,

and semantics are influenced by the document. For instance, can we discover that

the sentence structure in Faulkner’s Absalom, Absalom is somehow different from

the sentence structure in Hemingway’s The Old Man and the Sea? Can we discover

if similarly spelled words often appear in same documents? Can we discover that a

document talks about “disease” even if it never mentions that word?

This thesis attempts to answer questions like these by combining linguistic insights

with models that are aware of documents. This chapter introduces the field of

topic modeling, which provides a formalism for capturing document context. After

introducing topic modeling, this chapter gives a cursory overview of the linguistic

formalisms and techniques we will combine with topic modeling to create models that

are linguistically relevant and also aware of the context of a document. These models

are presented in the following chapters and seek to answer questions like the above

contrast between Faulkner and Hemingway.

1.1 Topic Models

A topic model is a model that, given a corpus of documents, discovers the topics that

permeate the corpus and assigns documents to these topics. Thus, at a high level, one

can think of a topic model as a black box with two outputs: the assignment of words

to topics and the assignment of topics to documents.1 The first output, the topics, are

1We will refine this view later. Other communities might take a different approach to this black
box view. For instance, the psychology literature would object to actual inspection of the outputs of
latent semantic analysis (LSA) (Landauer and Dumais, 1997). LSA is a matrix factorization-based
technique that is the forerunner of probabilistic topic models (Hofmann, 1999). In the psychological
community, the outputs of LSA are almost exclusively used as tools to make associations between
words and documents, documents and documents, or words and words. However, mathematically,
the outputs of both LSA models and topic models are identical: assignments of words to topics and
assignments of documents to topics (Griffiths and Steyvers, 2006).
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distributions over words; in this thesis (as in most work dealing with topic models) we

normally present topics as lists of words, as in Figure 1.2(a), which shows three topics

discovered from articles in the New York Times. Each word has a probability given a

topic; to create the lists in Figure 1.2(a), we sort the words in descending probability

and show the top handful of words. In practice, this is usually enough to get a rough

understanding of the topic.

The other primary output of a topic model is an assignment of documents to topics.

The bag of words representation of each document (see Figure 1.1 for a simple example)

is modeled as a mixture of topics. Returning the the New York Times corpus, we can

see how documents are associated with a few of the topics. For example, the story

entitled “Red Light, Green Light: A 2-Tone L.E.D. to Simplify Screens” uses words

mostly from the technology topic, while the story entitled “The three big Internet

portals begin to distinguish among themselves as shopping malls” also requires the

business topic to cover all the words in the text, and the story “Forget the bootleg,

just download the movie legally” adds the arts topic.

Original Document Bag of Words
one fish, two fish fish: 8 new: 1
red fish, blue fish blue: 2 one: 1

black fish, blue fish black: 1 red: 1
old fish, new fish

Figure 1.1: The first lines of Dr. Seuss’s One Fish, Two Fish, Red Fish, Blue, Fish
turned into a bag of words representation. From the bag of words representation it’s
clear that the document is about fish. However, important information is lost. For
instance, every word that isn’t “fish” modifies a noun (in this case, “fish”) and there
are clear classes of adjectives that appear often (e.g. cardinal numbers, colors, etc.).

There are a wide variety of methods of finding these topics and the assignment of

topics to documents. In this work, we focus on latent Dirichlet allocation (LDA) (Blei

et al., 2003). In the literature, LDA is called a probabilistic, generative model. It is

generative because it tells the story of how our data came to be, and it is probabilistic
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computer, 
technology, 

system, 
service, site, 

phone, 
internet, 
machine

play, film, 
movie, theater, 

production, 
star, director, 

stage

sell, sale, 
store, product, 

business, 
advertising, 

market, 
consumer

TOPIC 1

TOPIC 2

TOPIC 3

(a) Topics

Forget the Bootleg, Just 
Download the Movie Legally

Multiplex Heralded As 
Linchpin To Growth

The Shape of Cinema, 
Transformed At the Click of 

a Mouse

A Peaceful Crew Puts 
Muppets Where Its Mouth Is

Stock Trades: A Better Deal 
For Investors Isn't Simple

The three big Internet 
portals begin to distinguish 

among themselves as 
shopping mallsRed Light, Green Light: A 

2-Tone L.E.D. to 
Simplify Screens

TOPIC 2

TOPIC 3

TOPIC 1

(b) Document Assignments to Topics

Figure 1.2: The latent space of a topic model consists of topics, which are distributions
over words, and a distribution over these topics for each document. On the left are
three topics from a fifty topic LDA model trained on articles from the New York
Times. On the right is a simplex depicting the distribution over topics associated with
seven documents. The line from each document’s title shows the document’s position
in the topic space.

because it tells this story using the language of probability. Not all of the details of

the story are known in advance, however; some of the pieces are missing. We call

these missing pieces latent variables. We use the mathematical technique of statistical

inference to discover the the latent variables that statistically best explain our observed

data.2 We stress that the latent topics are not observed or annotated in any way; LDA

is an unsupervised technique for finding these topics from raw documents. That they

correspond to human notions of topics is a product of how language is used (Griffiths

and Steyvers, 2006; Chang et al., 2009).

LDA serves as the starting point for the models discussed in all of the subsequent

chapters. Each chapter presents a model that augments the modeling assumptions of

LDA with linguistic assumptions.

2More precisely, we discover the posterior distribution over the latent variables. There are many
possible settings of the latent variables that explain our data, but some are better than others. The
detail that we discover a distribution over the latent variables should become clear in later chapters
that deal with inference; for now, we focus on the intuitions of the models.
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Figure 1.3: Draws of a multinomial distribution of with five components from three
different settings of the parameter of a Dirichlet distribution. When the parameter
is substantially less than one (top), very sparse distributions are favored. When the
parameter is one (middle), all multinomial distributions are equally likely. Finally, if
the magnitude of the parameter is large, draws from the Dirichlet are constrained to
be close to the distribution defined by the normalized parameter.

1.1.1 Latent Dirichlet Allocation

Before we can formally define LDA, we will first cover some statistical formalities.

Readers familiar with the Dirichlet distribution, the multinomial distribution, and

how the two distributions are conjugate should feel free to skip to section 1.1.3.

1.1.2 The Dirichlet Distribution

A Dirichlet distribution is a distribution over finite discrete probability distributions.

A Dirichlet distribution of dimension K gives a distribution over vectors {θ1, . . . , θK}

such that
∑

k θk = 1 and mink θk > 0. It is parameterized by a vector {α1, . . . , αK} of

non-negative real numbers, and its expected value is 1P
k αk
{α1, . . . , αK}.
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A Dirichlet distributed random variable is distributed according to

Dir(θ |α1, . . . , αK) =
Γ (
∑

k αk)∏
k Γ (αk)︸ ︷︷ ︸

normalization

∏
k

θαk−1
k .

The draw θ is a distribution over discrete observations. Draws from a Dirichlet

distribution for various settings of the parameter α are presented in Figure 1.3. When

α is relatively small, the Dirichlet distribution favors sparse multinomial distributions

where only a small number of components have weight. This corresponds to our

intuition that a document should have a handful of topics rather than gradations of

hundreds. When α is all ones, the distribution is uniform; when α is larger, it favors

a more peaked distribution around the normalized α parameter, α
|α| .

The draws from a Dirichlet distribution are multinomial distributions. Multinomial

distributions have parameter θ and are distributions over counts {n1, . . . , nK} over K

discrete events distributed according to

Mult(n | θ1, . . . , θK) =
(
∑

k nk)!∏
k nk!︸ ︷︷ ︸

normalization

∏
k

θnkk .

Suggestively, we used the same symbol, θ, for the random variable of the Dirichlet

distribution and the parameter for the multinomial distribution. Often, multinomials

are modeled as coming from a Dirichlet distribution (later on, we will see that this

is also the case in LDA). When we then use Bayes’ rule to determine the posterior

distribution of a multinomial θ given a set of observed counts n

p(θ |n,α) ∝
∏
k

θnkk
∏
k

θαk−1
k =

∏
k

θnk+αk−1
k , (1.1)

we discover that it has the same form as a Dirichlet distribution parameterized by

n+α. Thus, the posterior distribution of a multinomial given counts has the same
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form as the prior. When such a relationship holds, the prior is said to be conjugate.

This relationship allows for easier inference in models based on LDA, as we see in

Sections 2.2 and 5.3.2.

For both the Dirichlet and the multinomial, we must specify the desired dimension

K before we learn our models, which can be difficult especially when we are dealing

with unsupervised models. In section 5.2.2, we present techniques that don’t require a

fixed dimension to model the data.

1.1.3 Defining LDA

Now that we’re done with the statistical formalities, we can define LDA more rigorously.

LDA assumes the following generative process to create a corpus of M documents

with Nd words in document d using K topics {β1, . . .βK}:

1. For each document d ∈ {1, . . .M}:

(a) Choose the document’s topic weights θd ∼ Dir(α)

(b) For each word n ∈ {1, . . . Nd}:

i. Choose topic assignment zd,n ∼ Mult(θd)

ii. Choose word wd,n ∼ Mult(βzd,n)

In this process, Dir() represents a Dirichlet distribution (its properties and relationship

to the multinomial are discussed in Section 1.1.2), and Mult() is a multinomial

distribution. α and β are parameters.

The topic weights, θd are vectors of length K, the number of topics in the model,

and there is a topic weight distribution for each document d. This distribution

corresponds to the simplex shown in Figure 1.2(b). The distribution θd is used to

choose the topic assignment zn for each of the n words in document d. This is a

selector variable that chooses which topic βk the observed token wn comes from.

The kth topic βk is a vector of length V ; each component corresponds to a word’s
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MNd
θd zd,n wd,n

K
βk

α

Figure 1.4: The graphical model for latent Dirichlet allocation. Each line represents
a possible statistical dependence, shaded nodes are observed, and plates denote
replication.

probability in that topic. (We use boldface in equations to denote when symbols are

being used as vectors.) In our cartoon picture of topics and documents, βzn is one of

the sorted word lists in Figure 1.2(b) and θd is a position in the simplex depicted in

Figure 1.2. For example, “stock” would have a high weight in the finance topic but

a low weight in the entertainment topic, and the opposite would be true of “movie.”

Again, we stress that these topics are unobserved in real data; the topics we learn are

the statistical signatures of how terms appear together in data and do not reflect any

human annotation.

Another tool that we’ll often use for describing generative processes is the plate

diagram. An example of a plate diagram is Figure 1.4, which represents the generative

process for LDA. Each latent variable, observed piece of data, and parameter is

represented by a node in a graph. Each possible statistical dependence is represented

by a line between the nodes. Observations are represented by shaded nodes, and

replication is denoted by rectangular plates; the symbol in the bottom right corner

represents how many times the variables inside the plate are repeated. For example,

each document d has Nd words, denoted by the inner plate. Inside the inner plate are

two nodes, zn and wn, representing the topic assignment and the token observed for

the nth word, respectively. Because these words are observed, the node corresponding

to each word is shaded. Because these words are drawn from the zthn topic βzn , arrows

go from both z and β to wn.

8



Because we only observe words collected into documents, discovering the topics

β1:K , topic assignments z1:D, and per-document topic distributions θ1:D is a problem

of statistical inference. We want to find the random variables that maximize the

likelihood

p(w|α,β) =
∏
d

∫
θd

p(θd |α)
∏
n

∑
zn

p(zn |θd)p(wn |βzn)dθd

However, directly maximizing the likelihood is not tractable because of the coupling

between β and θ. Therefore, in LDA and other models that use LDA as a foundation,

we must appeal to approximate inference methods.

1.1.4 Approximate Posterior Inference

Approximate inference allows us to uncover a distribution of the values of the latent

variables that best explain our observed data even when the posterior, as in the case

of LDA, is intractable. In this work, we expand on inference techniques originally

developed for LDA, particularly Markov chain Monte Carlo (MCMC) techniques and

variational inference.

We delay discussing inference in depth to preserve the focus here on issues of

modeling and to couple explanation of inference techniques with examples specific

to the models we develop. MCMC techniques are introduced in Section 2.2, and

variational techniques are introduced in Section 5.3.2.

1.1.5 Applications and Related Work

The first topic models were developed in the psychology and text retrieval communities,

where they were called latent semantic analysis (LSA) (Deerwester et al., 1990) and

probabilistic latent semantic analysis (pLSA) (Hofmann, 1999). Like LDA, the

represent documents as a combination of topics, but unlike LDA, LSA and pLSA do
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not embody fully generative probabilistic processes. By adopting a fully generative

model, LDA exhibits better generalization performance and is more easily used as a

module in more complicated models. (Blei et al., 2003; Blei and Lafferty, 2009).

This flexibility has allowed LDA to be used for a wide variety of applications. In

a traditional information retrieval setting, Wei and Croft (2006) interpolated LDA

with a standard language model to better determine which documents were relevant

to a query. Also in the information retrieval domain, Rexa (Information Extraction

and Synthesis Laboratory, 2009) is a document browser that exposes the topics of

a collection to a user to help guide her to relevant documents using models built on

LDA (Rosen-Zvi et al., 2004).

In addition to discovering individual documents, LDA has also served as a tool for

finding trends and patterns within the entire corpus. Hall et al (2008) used the topics

created by LDA to explore how the field of computational linguistics has changed over

time. This is similar to dynamic topic models (Blei and Lafferty, 2006) and continuous

time dynamic topic models (Wang et al., 2008), which explicitly model the evolution

of topics over time.

Researchers have also extended LDA to model other facets of text corpora such as

the words particular authors use (Rosen-Zvi et al., 2004), patterns of citations that

appear in documents (Mimno and McCallum, 2007), the latent emotions expressed in

product reviews (Blei and McAuliffe, 2007; Titov and McDonald, 2008), part-of-speech

labeling (Toutanova and Johnson, 2008), discourse segmentation (Purver et al., 2006),

and word sense induction (Brody and Lapata, 2009).

LDA has applications outside text as well; it has been used in understanding

images (Li Fei-Fei and Perona, 2005; Blei and Jordan, 2003; Wang et al., 2009; Fergus

et al., 2005), computer source code (Maskeri et al., 2008), biology (Pritchard et al.,

2000), and music (Hu and Saul, 2009). There are many exciting applications of topic

models to many domains; for more information, we suggest one of the reviews of topic
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modeling and related literature (Blei and Lafferty, 2009; Griffiths et al., 2007).

1.1.6 Assumptions

LDA’s limited assumptions provide the flexibility that allows it to be applied in so

many diverse fields. However, LDA’s view of text is simplistic and ignores much of the

structure that is present in natural language. Because the topic assignments of words

are independent given the per-document topic distribution, the order of the words in a

document doesn’t matter; the order of words is exchangeable. For many applications,

such as information retrieval, this so-called “bag of words” assumption is reasonable.

Consider the bag of words representation of Dr. Seuss in Figure 1.1. The bag of

words representation does an excellent job of showing that the document is about fish,

and LDA would be able find other fish-related documents that it would share topics

with. However, the bag of words representation loses much of the relationship that is

clear from the original text.

Observe that the text is a sequence of noun phrases modified with “fish” as the

head and every word that is not “fish” modifies “fish.” Another document with this

construction would not be deemed as similar by LDA unless it used the same words,

as this regularity is lost in the bag of words representation.

There are contexts, however, where this regulation is important. Suppose you

wanted to know what kind of fish appear in a document. There are computational

methods to discover that “one,” “two,” “red,” “blue,” etc. all change the kind or

number of fish being mentioned (how this can be more rigorously codified is discussed

in Section 1.2.1). Question answering systems are another example of a context

where local syntax is crucially important. Imagine you learned that “A, in its recent

acquisition of B,” is a good signal that A bought B (Banko et al., 2007). You wouldn’t

want to throw that information away, and you might want to combine that analysis

with the insight offered by topic models.
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Relationships between the words that are implicit in a human’s reading of the text

are also lost. A human realizes that that “red,” “blue,” and “black” are all colors, but

LDA has no reason to correlate “red” with “blue” instead of “marzipan.” Similarly,

LDA would be unable to associate this document with a German translation, even

though the German translation would be half composed of the word “Fisch” and a

reader can see that these words are likely related. To LDA “fish” is no more similar

to “Fisch” than it is to “marzipan.”

Again, there are applications where retaining this information would be of value;

imagine searching a database for articles about “fish;” if the person searching also

spoke German, you might also want to give them documents that also feature the

word “Fisch” prominently.

1.2 Sources for Capturing More Nuanced Patterns

from Text

In our efforts to allow LDA-based models to capture these patterns, we draw upon

formalisms developed in multiple subfields of linguistics: syntax, semantics, and

cross-language investigations of semantics and morphology. We briefly introduce the

resources that we use from each of these subfields.

1.2.1 Syntax

When we discussed the Dr. Seuss example, we were able to talk about classes of words

like “nouns” because of a shared understanding of language. Syntax provides formal

definitions to such terms and has been applied to language in a formal, statistical

manner.

One such formalism was developed in the early fifties (Chomsky, 1956; Chomsky

and Miller, 1958). The analysis that would eventually become known as a context
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free grammar formalized the ideas of syntactic category and part of speech that had

been the domain of descriptive grammars. A context free grammar consists of a

set of non-terminals (e.g. phrase or part of speech markers), a set of terminals (e.g.

the words in a language), production rules (a function giving rules for replacing a

non-terminal symbol with other non-terminals or terminals), and a start state (which

gives the non-terminal that generates all productions).

For example, a simple context free grammar might be

Non-terminal Productions Terminal Productions

S → NP VP V → (“swim”, “sleep”)

VP → V (NP) (Adv) (PP) P → (“on”, “over”, “with”)

NP → (Det) (Adj) N (PP) Det → (“a”, “the”)

PP → P NP Adj → (“blue”, “green”, “red”)

Adv → (“fast”, “lazily”)

N → (“rock”, “fish”, “wink”),

where non-terminals are in quotes and parentheses denote optional productions (e.g.

the nonterminal VP can produce either V NP or V NP Adv). The start state is S.

Non-terminals can be any arbitrary symbol, so long as they lead to productions

that can generate the language. However, they are typically chosen in a way that is

consistent with intuition about language and linguistic theory. 3

This grammar allows the following analysis for the sentence “The red fish swam

over a fish with a wink.”

3It’s not important to understand the exact meaning of the non-terminals in this example, but
they roughly correspond to common sense intuitions of the grammatical categories of words. Nouns
(N) are the foundation of noun phrases (NP), which are the cluster of words that modify a particular
noun (e.g. the noun phrase “the green fish with a rock”). Prepositions (P) can be form prepositional
phrases with a noun phrase (e.g. “with a rock”), and verbs can form verb phrases. The important
intuition is that this is a framework for encoding the grammatical structure of a sentences.
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in addition to a parse where the red fish swims over a fish who has the property of

winking.

In contrast, the dependency grammar formalism places observed symbols (terminals

in the language of a CFG) within the tree structure (Hays, 1964; Nivre, 2005). In

such models, internal states are a tuple of terminal symbols and nonterminal states.

A dependency grammar gives rules for the possible children of each of the internal

nodes and vocabularies for each of the symbols. For example, a dependency grammar

might be 4

Allowed Dependencies Terminal Productions

V → (N * N Adv) V → (“swim”, “sleep”)

V → (N * N) P → (“on”, “over”, “with”)

V → (N * N P) Det → (“a”, “the”)

N → (Det Adj *) Adj → (“blue”, “green”, “red”)

N → (Det *) Adv → (“fast”, “lazily”)

N → (Adj *) N → (“rock”, “fish”, “wink”),

N → (Det * P)

N → (Adj * P)

P → (* N)

4The grammar presented here is not representative of the breadth of the grammars allowed by
the dependency formalism and is meant as a minimal introduction to the representation needed for
understanding later chapters. Other formalisms include the Prague school and Mel’chuk’s dependency
syntax, which are discussed in the excellent overview (Kübler et al., 2009).
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which would offer as one possible interpretation of the sentence as

ROOTROOT TheDET redADJ fishN swamV overP aDET fishN withP aDET winkN
WWW W W W WWWW

Dependency parses of a sentence offer an alternative to the phrase structure of

context free grammars. Both of these formalisms have been used as the foundation for

probabilistic models of language (Charniak, 1997; Eisner, 1996) that can be learned

from real-world datasets (Marcus et al., 1994). In practice, dependency grammars are

more appropriate for languages where word order is more fluid, such as Czech (Hajič,

1998) and where defining constituency grammars becomes more difficult.5

The formalism of syntax allows us to discover patterns of word usage that describe

function at a very local level. In contrast to topic models, syntactic models offer a

view of local context that allows us to address some of the problems of a bag of words

model.

1.2.2 Semantics

A fundamental component of linguistics is the lexicon, which encompasses a speaker’s

understanding of the vocabulary of a language. Allan (2001) argues that a lexicon

must not only posses organization by its surface form, as in a typical dictionary, and

syntax, as expressed in the terminal rules in the grammars above; a lexicon must also

include organization by meaning.

One such attempt to create a computer-readable lexicon that incorporates meaning

into its organization is WordNet (Kilgarriff, 2000). WordNet puts words with the

same meaning together into clusters of words called synonym sets (synset). For example,

WordNet considers [’car’, ’auto’, ’automobile’, ’machine’, ’motorcar’]

5The example presented above, which is context free, does not offer this flexibility. However, the
formalisms discussed in Footnote 4 do.
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to be a single synset.

These synsets are connected by a network of relationships. For example, the car

synset has the following links encoded in WordNet:

hyponym is a specific instance of the concept, for example, [limo, limousine, sedan,

saloon], [stock car], [SUV, sport utility, sport utility vehicle], and

[convertible].

hypernym is less specific instance of the concept, e.g. a child is an example of a parent

(thus, it is sometimes called an “is a” relationship). The car synset’s hypernym

is [motor vehicle, automotive vehicle].

meronym is a part of the parent. Some of the car synset’s meronyms include [horn,

hooter, car horn, automobile horn] and [cowl, hood]. Conversely, the

opposite relationship is that the car synset is a holonym of [cowl, hood].

The network of WordNet is based on psychological experiments that suggest that

the human lexicon is based on properties of inheritance (Miller, 1990). For example,

when asked if a canary is yellow, has feathers, has a spine, or has skin, each question

takes longer to answer than the last because it asks about properties of more distant

hyperyms (bird, chordate, animal).

WordNet is the de facto resource for annotating the sense of ambiguous words

in a text.6 For example, “cowl” has two meanings in WordNet: the hood of a

car and the garment worn by a monk. Determining whether an appearance of the

string “cowl” is talking about a piece of clothing or a car part is called word sense

disambiguation (WSD). In Chapter 2, we develop an algorithm for this important

NLP problem that builds upon topic models.

6Kilagrriff (2000) notes that “not using [WordNet] requires explanation and justification.”
Almost all word sense disambiguation bakeoffs use WordNet as the sense inventory (Kilgarriff and
Rosenzweig, 2000), and the first sense-disambiguated corpora were constructed using WordNet
as a sense inventory (Miller et al., 1993). While there are alternative resources, none have been as
widely embraced as WordNet.
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1.2.3 Linguistic Representation of Multiple Languages

The formalism of WordNet has been applied to many languages from different

language families, e.g. Japanese (Isahara et al., 2008), Hebrew (Ordan and Wintner,

2007), and German (Hamp and Feldweg, 1997), using both manual and automatic

methods (Sagot and Fǐser, 2008). Thus, the representation of meaning has been made

independent of the actual lexical realization of those meanings.

In addition to explicit connections being drawn between languages, there are

deep connections that implicitly exist between languages. These implicit connections

are so thoroughly studied that eighty years ago, Sapir’s assessment of the state of

linguistics (1929) declared that there was little left to be done in describing the

processes that change a language over time or change one language into another.

Despite the field being well studied even at the start of the twentieth century,

understanding the common foundations of the worlds’ languages is the focus of an active

branch of linguistics called typology (Ramat, 1987; McMahon and McMahon, 2005).

There are deep and subtle connections across languages (which we will not discuss

here), but some other commonalities between languages are obvious to even casual

observers. Many common terms (called “cognates”) appear across languages with

similar meaning, sound, and representation (Carroll, 1992). In addition to common

words that appear in multiple language because of borrowing or a shared history,

proper names are often direct transliterations (Knight and Graehl, 1997; Sproat et al.,

2006). In sum, we can often discover simple, consistent relationships that algorithms

like LDA can use to examine documents in multiple languages simultaneously.
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1.2.4 Roadmap for Subsequent Chapters: Adding Linguistic

Intuitions

In the next chapters, we will use these tools to enhance LDA’s ability to represent of

text. In Chapter 2, we combine LDA’s automatic discovery of implicit meaning with

the human-generated meaning expressed through WordNet. We imbue WordNet’s

explicit representation of meaning into a topic model to create a model called LDAWN

(LDA with WordNet). By modeling the meaning of each word as a latent variable,

we allow LDA to perform word sense disambiguation.

The next two chapters discuss how to use non-parallel multilingual data with topic

models, which allow the many applications developed using topic models (as discussed

in Section 1.1.5) to be applied to a broader range of corpora. In Chapter 3, we extend

LDAWN to use WordNet to provide a way of modeling topics and meaning that is

independent of language. Multilingual LDAWN uses WordNet as a common bridge

to express the meaning of a topic, allowing the discovery of topics that are consistent

across languages.

Although many languages have a WordNet, not every language does, and for

many languages a nascent WordNet might be insufficient or licensing restrictions

might preclude its use. In Chapter 4, we demonstrate a model that allows the discovery

of multilingual topics without a prespecified WordNet across languages. It does so

by learning correspondences across languages as it simultaneously discovers the latent

topics in a document.

Finally, in Chapter Chapter 5, we present a new method for moving beyond the

bag of words representation of topic models by explicitly modeling the patterns of

dependency representations of sentences discussed in Section 1.2.1. Such models give

the “best of both worlds,” allowing the semantic properties captured by topic models

to complement the syntactic information captured by the syntactic representations of

language discussed in Section 1.2.1.
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Chapter 2

LDAWN: Adding a Semantic

Ontology to Topic Models

Latent Dirichlet Allocation (LDA), as we discussed in the previous chapter, does not

model any inherent connection between words. While LDA can discover that words

are used in similar context, it has no way of knowing that a “collie” and a “spaniel”

are both dogs or that “burn” is a specific type of “injury.” But it’s clear that humans

share common notions of how words are connected semantically (Miller and Charles,

1991; Boyd-Graber et al., 2006); if you ask different people how similar “dog” and

“collie” are, you will get similar answers.

If a topic model could model meaning directly, rather than working through the

intermediate representation of words, we could explicitly model the meaning of a

document. As a side effect, explicitly modeling the sense of a word also allows us to

apply topic models to new applications.

One such application is word sense disambiguation (WSD), the task of determining

the meaning of an ambiguous word in its context. It is an important problem in

natural language processing (NLP) because effective WSD can improve systems for

tasks such as information retrieval, machine translation, and summarization. In
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this chapter, we develop latent Dirichlet allocation with WordNet (LDAWN), a

generative probabilistic topic model for WSD where the sense of the word is a hidden

random variable that is inferred from data.

There are two central advantages to this approach. First, with LDAWN we

automatically learn the context in which a word is disambiguated. Rather than

disambiguating at the sentence-level or the document-level, our model uses the other

words that share the same hidden topic across many documents.

Second, LDAWN is a fully-fledged generative model. Generative models are

modular and can be easily combined and composed to form more complicated models.

(As a canonical example, the ubiquitous hidden Markov model is a series of mixture

models chained together.) Thus, developing a generative model for WSD gives other

generative NLP algorithms a natural way to take advantage of the hidden senses of

words.

While topic models capture the polysemous use of words (Griffiths and Steyvers,

2006), they do not carry the explicit notion of sense that is necessary for WSD.

LDAWN extends the topic modeling framework to include a hidden meaning in the

word generation process. In this case, posterior inference discovers both the topics of

the corpus and the meanings assigned to each of its words.

We begin by introducing a disambiguation scheme based on probabilistic walks over

the WordNet hierarchy (Section 2.1), and we then embed the WordNet-Walk

in a topic model, where each topic is associated with walks that prefer different

neighborhoods of WordNet (Section 2.1.1). Next, we derive a Gibbs sampling

algorithm for approximate posterior inference that learns the senses and topics that

best explain a corpus (Section 2.2). Finally, we evaluate our system on real-world

WSD data, discuss the properties of the topics and disambiguation accuracy results,

and draw connections to other WSD algorithms from the research literature.

20



2.1 Probabilistic Approaches that Use WordNet

The WordNet-Walk is a probabilistic process of word generation that is based on

the hyponomy relationship in WordNet (Miller, 1990). WordNet, a lexical resource

designed by psychologists and lexicographers to mimic the semantic organization in

the human mind, links “synsets” (short for synonym sets) with myriad connections.

The specific relation we’re interested in, hyponomy, points from general concepts to

more specific ones and is sometimes called the “is-a” relationship.

As first described by Abney and Light (1999), we imagine an agent who starts

at synset [entity], which points to every noun in WordNet by some sequence of

hyponomy relations, and then chooses the next node in its random walk from the

hyponyms of its current position. The agent repeats this process until it reaches a

leaf node, which corresponds to a single word (each of the synset’s words are unique

leaves of a synset in our construction). For an example of all the paths that might

generate the word “colt” see Figure 2.1. The WordNet-Walk is parameterized by

a set of distributions over children for each synset s in WordNet, βs.

2.1.1 A topic model for WSD

The WordNet-Walk has two important properties. First, it describes a random

process for word generation. Thus, it is a distribution over words and thus can be

integrated into any generative model of text, such as topic models. Second, the synset

that produces each word is a hidden random variable. Given a word assumed to be

generated by a WordNet-Walk, we can use posterior inference to predict which

synset produced the word.

These properties allow us to develop LDAWN, which is a fusion of these WordNet-

Walks and latent Dirichlet allocation (LDA) (Blei et al., 2003). LDA assumes that

there are K “topics,” multinomial distributions over words, which describe a document
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revolver six-gun six-shooter

Figure 2.1: The possible paths to reach the word “colt” in WordNet. Dashed lines
represent omitted links. All words in the synset containing “revolver” are shown, but
only one word from other synsets is shown.

collection. Each document exhibits multiple topics, and each word in each document

is associated with one of them.

Although the term “topic” evokes a collection of ideas that share a common theme

and although the topics derived by LDA seem to possess semantic coherence (for

examples, see Figure 1.2(a)), there is no reason to believe this would be true of the

most likely multinomial distributions that could have created the corpus given the

assumed generative model. That semantically similar words are likely to occur together

is a byproduct of how language is actually used.

In LDAWN, we replace the multinomial topic distributions with a WordNet-

Walk, as described above. LDAWN assumes a corpus is generated by the following

process (for an overview of the notation used in this paper, see Table 2.1).

1. For each topic, k ∈ {1, . . . ,K}
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Symbol Meaning
K number of topics
βk,h multinomial probability vector over the successors of synset h in topic k

S scalar that, when multiplied by τh gives the prior for βk,h
τh normalized vector whose ith entry, when multiplied by S, gives the prior

probability for going from synset h to its ith child
θd multinomial distribution over the topics that generate document d
α prior for θ
zd,n assignment for word n in document d to a topic
Λd,n assignment for word n in document d to a path through a

WordNet ending at a word.
λi,j one link in a path λ going from synset i to synset j.
t−ud,i The number of words in document d that have been assigned topic i

(ignoring word u).
b−uk,p,c The number of transitions in the WordNet-Walk for topic k that

have been observed going from synset p to its child synset c (not
counting the path assignment of word u).

Table 2.1: A summary of the notation used in this chapter. Bold vectors correspond
to collections of variables (i.e. zu refers to a topic of a single word, but z1:D are the
topics assignments of words in document 1 through D).

(a) For each synset h ∈ {1, . . . ,H} in the hierarchy, randomly choose transition

probabilities βk,h ∼ Dir(Sτh).

2. For each document d ∈ {1, . . . , D}

(a) Select a topic distribution θd ∼ Dir(τ)

(b) For each word n ∈ {1, . . . , Nd}

i. Select a topic zd,n ∼ Mult(θd)

ii. Create a path Λd,n starting with the root node h0.

iii. Given the current node h, choose a new node in the path:

A. Choose the next node in the walk h′ ∼ Mult(βzd,n,h); add the step λh,h′

to the path Λd,n.

B. If h′ is a leaf node, generate the associated word wn. Otherwise, repeat

with h′ as the current node.

Only the the words of a document is observed; everything else is hidden. Thus,

given a collection of documents, our goal is to perform posterior inference, which is
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Figure 2.2: The graphical model for LDAWN. Some indices have been suppressed for
clarity.

the task of determining the conditional distribution of the hidden variables given the

observations. In the case of LDAWN, the hidden variables are the parameters of the

K WordNet-Walks, the topic assignments of each word in the collection, and the

synset path of each word. In a sense, posterior inference reverses the process described

above.

Specifically, given a document collection w1:D, the full posterior is

p(β1:K,1:H , z1:D,θ1:D,Λ1:D |w1:D, α, Sτ )

∝

(∏
k

∏
h

p(βk,h |Sτh)

)
(∏
d=1

p(θd |α)

Nd∏
n=1

p(Λd,n |β1:K)p(wd,n |Λd,n)

)
, (2.1)

where the constant of proportionality is the marginal likelihood of the observed data.

Note that by encoding the synset paths as a hidden variable, we have posed the

WSD problem as a question of posterior probabilistic inference. Further note that we

have developed an unsupervised model. No labeled data is needed to disambiguate a

corpus. Learning the posterior distribution amounts to simultaneously decomposing a

corpus into topics and its words into their synsets.

The intuition behind LDAWN is that the words in a topic will have similar meanings

and thus share paths within WordNet. For example, WordNet has two senses
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for the word “colt;” one referring to a young male horse and the other to a type of

handgun (see Figure 2.1).

Although we have no a priori way of knowing which of the two paths to fa-

vor for a document, we assume that similar concepts will also appear in the docu-

ment. Documents with unambiguous nouns such as “six-shooter” and “smoothbore”

would make paths that pass through the synset [firearm, piece, small-arm]

more likely than those going through [animal, animate being, beast, brute,

creature, fauna]. In practice, we hope to see a WordNet-Walk that looks like

Figure 2.4, which points to the right sense of cancer for a medical context.

LDAWN is a Bayesian framework, as each variable has a prior distribution. In

particular, the Dirichlet prior for βz,h, specified by a scaling factor S and a normalized

vector τh fulfills two functions. First, as the overall strength of S increases, we place a

greater emphasis on the prior. This is equivalent to the need for balancing as noted

by Abney and Light (1999).

The other function that the Dirichlet prior serves is to enable us to encode any

information we have about how we suspect the transitions to children nodes will be

distributed. For instance, we might expect that the words associated with a synset

will be produced in a way roughly similar to the token probability in a corpus. For

example, even though “meal” might refer to both ground cereals or food eaten at a

single sitting and “repast” exclusively to the latter, the synset [meal, repast, food

eaten at a single sitting] still prefers to transition to “meal” over “repast” given

the overall corpus counts (see Figure 2.1, which shows prior transition probabilities

for “revolver”).

By setting τs,i, the prior probability of transitioning from synset s to node i,

proportional to the total number of observed tokens in the children of i, we introduce

a Bayesian variation on information content (Resnik, 1995). As in Resnik’s definition,

this value for non-word nodes is equal to the sum of all the frequencies of hyponym
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words. Unlike Resnik, we do not divide frequency among all senses of a word; each

sense of a word contributes its full frequency to τ .

Because we initially thought that path length might bias our selection of paths, we

experimented with dividing by the path length during the sampling procedure. Better

results were achieved, however, by using the unweighted probability.

2.2 Posterior Inference with Gibbs Sampling

As described above, the problem of WSD corresponds to posterior inference: determin-

ing the probability distribution of the hidden variables given observed words and then

selecting the synsets of the most likely paths as the correct sense. Directly computing

this posterior distribution, however, is not tractable.

To approximate the posterior, we use Gibbs sampling, which has proven to be a

successful approximate inference technique for LDA (Griffiths and Steyvers, 2004). In

Gibbs sampling, like all Markov chain Monte Carlo methods, we repeatedly sample

from a Markov chain whose stationary distribution is the posterior of interest (Robert

and Casella, 2004). Even though we don’t know the full posterior, the samples can be

used to form an empirical estimate of the target distribution (Neal, 1993).

Gibbs sampling reproduces the posterior distribution by repeatedly sampling each

hidden variable conditioned on the current state of the other hidden variables and

the observations. In LDAWN, for every word in every document we sample the topic

assignments zd,n and a path through a topic λd,n. For both of these variables, we must

compute a conditional distribution over the possible values for these latent variables.

In this model, we integrate over θ, the document-specific distribution over topics and

β, the transition distribution over children of a synset. 1

In LDAWN, the state of the chain is given by a set of assignments where each word

1An alternative sampling scheme would be to also sample θ and β. This would yield (slightly)
simpler conditional distributions for the topic and paths, but would force us to sample multivariate,
continuous variables. In many models, it is simpler to integrate out such variables when possible.

26



is assigned to a path through one of K WordNet-Walk topics: uth word wu has a

topic assignment zu and a path assignment Λu. We use z−u and Λ−u to represent the

topic and path assignments of all words except for u, respectively.

We sample the topic assignment and path jointly, conditioned on the assignments

of all other words. Compared to sampling the path and topic separately, this approach

is faster to converge, is similar to Gibbs sampling techniques for LDA, is easier to

implement, and is intuitively appealing. For instance, suppose our model were trying

to understand what a “colt” was. Not sampling the path simultaneously would force

the word to keep a gun interpretation in every putative topic; moving the word into a

bucolic topic with a horse interpretation would require either forcing the word to take

a gun meaning in a bucolic topic or a horse meaning in a gunslinger topic.

The conditional distribution of a topic assignment and path is

p(zd,u = y,Λd,u = π | z−ud ,Λ−u, S, τ ,α)

= p(Λd,u = π | zd,u = y,Λ−u, S, τ )︸ ︷︷ ︸
path

p(zd,n = l | z−ud ,α)︸ ︷︷ ︸
topic

. (2.2)

To expand these conditional terms, it is convenient to have terms that count the

number words that take each topic in a document and the number of transitions with

in a topic’s WordNet-Walk . We use td−u,j to denote the number of words other

than u assigned topic j in the document d that word u is in and bk−u,p,c to denote the

number of transitions in the topic walk for the kth topic that go from a synset p to its

child c, not including the counts of the path associated with word u.
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First, we consider the topic term of Equation 2.2:

p(zd,u = y | z−ud ,α) =
p(zu=yd |α)

p(z−ud |α)
=

∫
θ
p(zdu=y | θ)p(θ |α)dθ∫
θ
p(z−ud | θ)p(θ |α)dθ

the posterior has Dirichlet distribution form (as in Equation 1.1)

=

∫
θ

(∏
k 6=y θ

tk+α−1
)
θty+αydθ∫

θ

∏
k θ

tk+α−1dθ

these integrals are the inverse of Dirichlet normalizer (Equation 1.1)

=
Γ (ty + αy + 1) Γ (

∑
k tk + αk)

Γ (ty + αy) Γ (
∑

k tk + αk + 1)

and the gamma function can be reduced using Γ (z + 1) = zΓ (z)

=
ty + αy∑
k (tk + αk)

. (2.3)

Similarly, the path term of Equation 2.2 is expanded using the same techniques but

taking the product over all of the transitions in the path π. The final expansion,

p(Λd,u = π | zud = y,Λ−u, S, τ ) =
∏
λi,j∈π

∫
βy,i

p(Λu=π | βy,i)p(βy,i | τi)dβy,i∫
βy,i

p(Λ−u | βy,i)p(βy,i | τi)dβy,i
1[wu ∈ π]

∝

 ∏
λi,j∈π

b−uy,i,j + Siτi,j∑
k b
−u
y,i,k + Si

1[wu ∈ π], (2.4)

only allows paths words that end in the uth word. As mentioned in Section 2.1.1,

we parameterize the prior for synset i as a vector τi, which sums to one, and a scale

parameter S. Putting equations 2.3 and 2.4 together, we have a joint probability

of a topic assignment and path assignment conditioned on all the topic and path

assignments of the other words in the corpus

p(zd,u = y,Λd,u = π | z−ud ,Λ−u, S, τ ,α) ∝

ty + αy∑
k (tk + αk)

 ∏
λi,j∈π

b−uy,i,j + Siτi,j∑
k b
−u
y,i,k + Si

1[wu ∈ π]
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The Gibbs sampler is essentially a randomized hill climbing algorithm on the

posterior likelihood as a function of the configuration of hidden variables. The

numerator of Equation 2.1 is proportional to that posterior and thus allows us to

track the sampler’s progress. We assess convergence to a local mode of the posterior

by monitoring this quantity.

2.3 Experiments

In this section, we test the efficacy of using hyponomy links for WSD, describe the

properties of the topics induced by running the previously described Gibbs sampling

method on corpora, and how these topics improve WSD accuracy.

This setup begs the question of whether the structure of WordNet is actually

useful for WSD as a probabilistic hierarchy. To test this, we created partial permuta-

tions of WordNet by taking a proportion of the synsets in WordNet and randomly

choosing a new parent for the node (this moves the entire subtree rooted at that

synset; we disallowed moves that would introduce a cycle).

The accuracy (Figure 2.3) steadily decreases as the fraction of synsets permuted

increases. Note, however, that even permuting all synsets in WordNet does not do

as poorly as the random baseline. We believe that this is because information is still

available inside synsets (the word constituents of synsets are never permuted).

Of the two data sets used during the course of our evaluation, the primary dataset

was SemCor (Miller et al., 1993), which is a subset of the Brown corpus with

many nouns manually labeled with the correct WordNet sense. The words in this

dataset are lemmatized, and multi-word expressions that are present in WordNet are

identified. Only the words in SemCor were used in the Gibbs sampling procedure; the

synset assignments were only used for assessing the accuracy of the final predictions.

We also used the British National Corpus, which is not lemmatized and which does
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Figure 2.3: Permuting the structure of WordNet results in decreased disambiguation
accuracy, showing that the structure of WordNet is helpful in creating improved
disambiguation.

not have multi-word expressions. The text was first run through a lemmatizer, and

then sequences of words which matched a multi-word expression in WordNet were

joined together into a single word. We took nouns that appeared in SemCor twice or

in the BNC at least 25 times and used the BNC to compute the information-content

analog τ for individual nouns.

2.3.1 Topics

Like the topics created by structures such as LDA, the topics in Table 2.2 coalesce

around reasonable themes. The word list was compiled by summing over all of the

possible leaves that could have generated each of the words and sorting the words by

decreasing probability. In the vast majority of cases, a single synset’s high probability

is responsible for the words’ positions on the list.

Reassuringly, many of the top senses for the present words correspond to the most

frequent sense in SemCor. For example, in Topic 4, the senses for “space” and

“function” correspond to the top senses in SemCor, and while the top sense for “set”

30



genus

star sign someone malignancy tumorconstellation

crabcancer cancer cancer

cancer

cancer

0.23 0.76

0.42
0.01

0.10 0.00

0.000.00

0.00
0.010.060.06

0.5 1

0.010.01

0.5
0.5

0.04
0.04

0.00

1.0

0.970.00

0.90

0.96

0.06

0.58
0.19

0.94

Figure 2.4: The possible paths to reach the word “cancer” in WordNet along with
transition probabilities from the medically-themed Topic 2 in Table 2.2, with the most
probable path highlighted. The dashed lines represent multiple links that have been
consolidated. Some words for immediate hypernyms have also been included to give
context. In all other topics, the person, animal, or constellation sense was preferred.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
president growth material point water plant music

party age object number house change film
city treatment color value road month work

election feed form function area worker life
administration day subject set city report time

official period part square land mercer world
office head self space home requirement group
bill portion picture polynomial farm bank audience

yesterday length artist operator spring farmer play
court level art component bridge production thing
meet foot patient corner pool medium style
police maturity communication direction site petitioner year
service center movement curve interest relationship show

Table 2.2: The most probable words from six randomly chosen WordNet-walks from
a thirty-two topic model trained on the words in SemCor. These are summed over
all of the possible synsets that generate the words. However, the vast majority of the
contributions come from a single synset.
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corresponds to “an abstract collection of numbers or symbols” rather than “a group

of the same kind that belong together and are so used,” it makes sense given the

math-based words in the topic. “Point,” however, corresponds to the sense used in

the phrase “I got to the point of boiling the water,” which is neither the top SemCor

sense nor a sense which makes sense given the other words in the topic.

While the topics presented in Table 2.2 resemble the topics one would obtain

through models like LDA (Blei et al., 2003), they are not identical. Because of the

lengthy process of Gibbs sampling, we initially thought that using LDA assignments

as an initial state would converge faster than a random initial assignment. While

this was the case, it converged to a state that was less probable than the randomly

initialized state and did no better at sense disambiguation (and sometimes worse).

The topics presented in 2.2 represent words both that co-occur together in a corpus

and co-occur on paths through WordNet. Because topics created through LDA only

have the first property, they usually do worse in terms of both total probability and

disambiguation accuracy (see Figure 2.5).

Another interesting property of topics in LDAWN is that, with higher levels of

smoothing, words that don’t appear in a corpus (or appear rarely) but are in similar

parts of WordNet might have relatively high probability in a topic. For example,

“maturity” in topic two in Table 2.2 is sandwiched between “foot” and “center,” both

of which occur about five times more than “maturity.”

2.3.2 Topics and the Weight of the Prior

Because the Dirichlet smoothing factor in part determines the topics, it also affects

the disambiguation. Figure 2.6 shows the modal disambiguation achieved for each of

the settings of S = {0.1, 1, 5, 10, 15, 20}. Each line is one setting of K and each point

on the line is a setting of S. Each data point is a run for the Gibbs sampler for 10,000

iterations. The disambiguation, taken at the mode, improved with moderate settings
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Figure 2.5: Topics seeded with LDA initially have a higher disambiguation accuracy,
but are quickly matched by unseeded topics. The probability for the seeded topics
starts lower and remains lower.

of S, which suggests that the data are still sparse for many of the walks, although

the improvement vanishes if S is very large. This makes sense, as each walk has over

100,000 parameters, there are fewer than 100,000 words in SemCor, and each word

only serves as evidence to at most 19 parameters (the length of the longest path in

WordNet).

Generally, a greater number of topics increased the accuracy of the mode, but after

around sixteen topics, gains became much smaller. The effect of τ is also related to the

number of topics, as a value of S for a very large number of topics might overwhelm

the observed data, while the same value of S might be the perfect balance for a smaller

number of topics. For comparison, the method of using a WordNet-Walk applied

to smaller contexts such as sentences or documents achieves an accuracy of between

26% and 30%, depending on the level of smoothing.

2.3.3 Evaluation on Senseval

Using the best model as evaluated on SemCor, a model with 32 topics and S = 1, we

applied the model to Senseval2 and Senseval3 English all-words task. The model gave
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Figure 2.6: Each line represents experiments with a set number of topics and variable
amounts of smoothing on the SemCor corpus. The random baseline is at the bottom
of the graph, and adding topics improves accuracy. As smoothing increases, the prior
(based on token frequency) becomes stronger. Accuracy is the percentage of correctly
disambiguated polysemous words in SemCor at the mode.

an accuracy of 40.5% and 30.3%, respectively, outperforming some of the domain-aware

algorithms in the Senseval3 contest evaluation (Mihalcea et al., 2004).

2.4 Error Analysis

This method works well in cases where the delineation can be readily determined from

the overall topic of the document. Words such as “kid,” “may,” “shear,” “coach,”

“incident,” “fence,” “bee,” and (previously used as an example) “colt” were all perfectly

disambiguated by this method. Figure 2.4 shows the WordNet-Walk corresponding

to a medical topic that correctly disambiguates “cancer.”

Problems arose, however, with highly frequent words, such as “man” and “time”

that have many senses and can occur in many types of documents. For example, “man”

can be associated with many possible meanings,
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1. man, adult male

2. serviceman, military man, man, military personnel

3. homo, man, human being, human

4. man (male subordinate)

5. man (virile and courageous person, worthy of respect)

6. man (husband or lover or boyfriend)

7. valet, valet de chambre, gentleman, gentleman’s gentleman, man

8. Man, Isle of Man

9. man, piece

10. world, human race, humanity, humankind, human beings, humans, mankind, man

Although we know that the “adult male” sense should be preferred, the alternative

meanings will also be likely if they can be assigned to a topic that shares common

paths in WordNet; the documents contain, however, many other places, jobs, and

animals which are reasonable explanations (to LDAWN) of how “man” was generated.

Unfortunately, “man” is such a ubiquitous term that topics, which are derived from

the frequency of words within an entire document, are ultimately uninformative about

its usage.

Even changing the size of the document would not help us disambiguate “man,”

however, as we would have no reason to suspect that we would then see “man” oc-

curring more frequently with sibling terms like “chap,” “fellow,” “sirrah,” or “boy

wonder.” This reveals that our underlying disambiguation method requires signifi-

cant co-occurrence of words from the same semantic class. In order to successfully

disambiguate words like “man,” our method would have to be aware of syntagmatic

relationships.

While mistakes on these highly frequent terms significantly hurt our accuracy,

errors associated with less frequent terms reveal that WordNet’s structure is not

easily transformed into a probabilistic graph. For instance, there are two senses of

35



the word “quarterback,” a player in American football. One is position itself and

the other is a person playing that position. While one would expect co-occurrence

in sentences such as “quarterback is a well-paid position and is protected by burly

linemen, so our quarterback is happy,” the paths to both terms share only the root

node, thus making it highly unlikely a topic would cover both senses.

Although WordNet is often criticized for its breadth and fine-grained senses,

and this too impacts our accuracy, an extraneous sense causes us no problem so long

as it is tucked away in an unvisited corner of WordNet. However, rare senses do

present problems when they are placed next to more frequent terms in WordNet.

Because of WordNet’s breadth, rare senses also impact disambiguation. For

example, the metonymical use of “door” to represent a whole building as in the phrase

“girl next door” is under the same parent as sixty other synsets containing “bridge,”

“balcony,” “body,” “arch,” “floor,” and “corner.” Surrounded by such common terms

that are also likely to co-occur with the more conventional meanings of door, this very

rare sense becomes the preferred disambiguation of “door.”

2.5 Related Work

Abney and Light’s initial probabilistic WSD approach (1999) was further developed

into a Bayesian network model by Ciaramita and Johnson (2000), who likewise used

the appearance of unambiguous terms close to ambiguous ones to “explain away”

the usage of ambiguous terms in selectional restrictions. We have adapted these

approaches and put them into the context of a topic model.

Recently, other approaches have created ad hoc connections between synsets in

WordNet and then considered walks through the newly created graph. Given the

difficulties of using existing connections in WordNet, Mihalcea (2005) proposed

creating links between adjacent synsets that might comprise a sentence, initially
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setting weights to be equal to the Lesk overlap between the pairs, and then using the

PageRank algorithm to determine the stationary distribution over synsets.

2.5.1 Topics and Domains

Yarowsky was one of the first to contend that “there is one sense for discourse” (1995).

This has lead to the approaches like that of Magnini (Magnini et al., 2001) which

assign one of a fixed set of categories to a text and then deterministically use the

domain annotation attached to WordNet to assign a single synset.

LDAWN is different in that the categories are not an a priori concept that

must be painstakingly annotated within WordNet and require no augmentation of

WordNet. This technique could indeed be used with any hierarchy. The concepts

discovered by our model are the ones that, via the assumed generative process, best

describe the observed documents and hierarchy.

Recently, the use of unsupervised topics have gained popularity as a means for

improving WSD. Cai et al. (2007) used topic distributions as a feature in a standard

discriminative WSD algorithm. This means that the flow of information is entirely one

way; while topics can influence the sense distinction, the topics remain static. Other

work (Brody and Lapata, 2009) has used tools from topic modeling on smaller contexts

(at most a dozen words) to induce word senses (rather than using a precompiled

dictionary).

2.5.2 Similarity Measures

Our approach gives a probabilistic method of using information content (Resnik, 1995)

as a starting point that can be adjusted to cluster words in a given topic together;

this is similar to the Jiang-Conrath similarity measure (1997), which has been used in

many applications in addition to disambiguation. Patwardhan (2003) offers a broad

evaluation of similarity measures for WSD.
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Our technique for combining the cues of topics and distance in WordNet is

adjusted in a way similar in spirit to Buitelaar and Sacaleanu (2001), but we consider

the appearance of a single term to be evidence for not just that sense and its immediate

neighbors in the hyponomy tree but for all of the sense’s children and ancestors.

Like McCarthy (2004), our unsupervised system acquires a single predominant

sense for a domain based on a synthesis of information derived from a textual corpus,

topics, and WordNet-derived similarity, a probabilistic information content measure.

By adding syntactic information from a thesaurus derived from syntactic features

(taken from Lin’s automatically generated thesaurus (1998)), McCarthy achieved

48% accuracy in a similar evaluation on SemCor; LDAWN is thus substantially

less effective in disambiguation compared to state-of-the-art methods (c.f. results in

Figure 2.6). This suggests, however, that other methods might be improved by adding

topics and that our method might be improved by using more information than word

counts.

2.6 Extensions

The model presented here serves as a bridge between the work in both topic modeling

and WSD. From the perspective of the topic modeling community, the model here

demonstrates a means for explicitly adding a notion of semantic coherence to the

discovered topics and encouraging correlation between vocabulary terms in topics.

From the perspective of the WSD community, this model demonstrates that, at least

for a simple WSD model, introducing automatically discovered topics can improve

accuracy.

In the next chapter, we further explore another consequence of this model. Because

this model separates meaning (the structure of the ontology) from lexicalization (the

leaves in the ontology), it enables us to create topic models for multilingual corpora.
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Chapter 3

Bridging the Gap Between

Languages

Latent Dirichlet Allocation (LDA) is a technique of discovering coherent topics in

the documents in a corpus. LDA can capture coherence in a single language because

semantically similar words tend to be used in similar contexts. This is not the

case in multilingual corpora. For example, even though “Hund” and “hound” are

orthographically similar and have nearly identical meanings in German and English (i.e.,

“dog”), they will likely not appear in similar contexts because almost all documents

are written in a single language. Consequently, a topic model fit on a bilingual corpus

reveals coherent topics but bifurcates the topic space between the two languages

(Table 3.1). In order to build coherent topics across languages, there must be some

connection to tie the languages together.

A topic model on unaligned text in multiple languages would allow the many

applications developed for monolingual topic models (for an overview, see Section 1.1.5)

to be applied to a broader class of corpora and would help monolingual users to explore

and understand multilingual corpora. In this chapter, we develop multilingual LDAWN,

an extension of the model presented in the previous chapter. This model discovers
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topics that are consistent across multiple languages.

Previous multilingual topic models connect the languages by assuming parallelism

at either the sentence level (Zhao and Xing, 2006) or document level (Kim and

Khudanpur, 2004; Tam and Schultz, 2007; Ni et al., 2009; Mimno et al., 2009). Many

parallel corpora are available, but they represent a small fraction of corpora. They

also tend to be relatively well annotated and understood, making them less suited for

unsupervised methods like LDA.

In contrast, we connect the languages by assuming a shared semantic space. In

Chapter 2 we created an explicit semantic space for English. However, the semantic

space created is not English specific. Since WordNet was first created, a number

of other languages have used WordNet’s internal structure as a guide to attach

other languages to WordNet internal structure. After reviewing what a multilingual

WordNet looks like, we expand the model from the previous chapter to accommodate

multiple languages and evaluate the model on a WSD task and a task inspired by

information retrieval.

Topic 0 Topic 1 Topic 2 Topic 3
market group bericht praesident
policy vote fraktion menschenrecht
service member abstimmung jahr
sector committee kollege regierung

competition report ausschuss parlament
system matter frage mensch

employment debate antrag hilfe
company time punkt volk

union resolution abgeordnete region

Table 3.1: Four topics from a ten topic LDA model run on the German and English
sections of Europarl. Without any connection between the two languages, the topics
learned are language-specific.

40



3.1 Assembling a Multilingual Semantic Hierarchy

Linguists have also created WordNet- like networks for languages besides English.

In this work, we focus on German, one of the first successors to the English Word-

Net (Hamp and Feldweg, 1997). However, we stress that there is nothing specific in

our approach to German; this approach is applicable to any languages that have been

been organized in a manner similar to WordNet’s hyponomy relationship.1

Many concepts are shared across languages. For instance, the German synset

[Umleitung, Umgehung] is equivalent to the English synset [detour, roundabout way].

Some concepts are lexicalized in one language but not the other. For instance, the

German synset [Beinbruch], a leg fracture, doesn’t have a fixed expression in English,

but it still can be considered a hyponym of the English synset [break, fracture].

The different level of equivalences are formalized in the interlingual index (ILI),

which is used by the EuroWordNet project (Vossen, 1998). For German (Kunze and

Lemnitzer, 2002), it explicitly links synsets across languages; in this work, we focus on

the “synonym,” “near synonym,” and “hypernym” relationships. If an English synset

is listed as a hypernym, synonym, or near synonym of a German synset, the German

words in that synset are added to the English synset.

Because this WordNet, by construction, is much more complete for English than

German, we attempted to reduce this imbalance using the following methods:

Balanced Only retain English words in a synset if there were also German words.

Dictionary Using a dictionary (Richter, 2008), if there is an English word with an unam-

biguous translation (the entry for the English word only points to one German

word, and the entry for the German word only points to the same English word),

add that German word to the synset.

Table 3.2 shows the relative sizes of the resulting multilingual WordNet when created

1For a review of this process for European languages, see (Vossen, 1998).
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Raw Bal Raw + Dict Bal + Dict
Eng Ger Eng Ger Eng Ger Eng Ger

Words 146347 13970 23481 13970 146347 17795 29942 17795
Synsets 82115 11198 11198 11198 82115 14524 14524 14524

Words per synset 1.78 1.25 2.10 1.25 1.78 1.23 2.06 1.23

Table 3.2: The size and coverage of a combined German-English WordNet. “Raw”
includes all words in both languages, “Balanced” only includes synsets that have a
representative from German, and “Dictionary” uses a dictionary to add translations
to unambiguous words.

with these strategies.

Initial experiments showed that ensuring a balance between each WordNet

was critical and that including more words leads to more comprehensive coverage of

vocabulary (especially for technical terms), so for the rest of the experiments in this

chapter, we focus on using the multilingual WordNet with balanced words expanded

by using the dictionary.

With this new WordNet that has multiple means of expressing many synsets,

we now need to adjust our generative model to account for multiple languages.

3.2 A Language Agnostic Generative Process

In Section 2.1, we described a monolingual process for drawing from a distribution

over words specified by WordNet. In this section, we extend this process to handle

a WordNet with multiple languages.

It is helpful to separate the generative process process for producing a word in

language l in topic walk k into two stages: choosing a synset and choosing a word

given that synset. Only the second step is language dependent; the first step can be

the same for all languages. The generative process we outline below is different from

the generative process in Section 2.1 in that we explicitly differentiate between synsets

and words in the generative process. In the monolingual case in Chapter 2, topology

was sufficient to differentiate words from synsets (in that model, by construction, all
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leaf nodes were words).

We must choose both a synset and a word. When we reach a synset, we flip a

biased coin to choose whether we continue to another synset or we stop at the synset

and emit a word. The stopping probability is ωk,h, specific to each topic and synset

(but shared for all languages). If we choose not to stop, we continue on to one of the

children of the current synset. The multinomial distribution βk,h gives a probability

over each of the node’s children.

If we did choose to stop and emit a word rather than continuing to a a child, we now

must emit a word from synset s. Here, it becomes important that we already know the

language of the document, ld. While each synset in each topic has a language-specific

distribution over the words, we only use the distribution over words that is consistent

with the document’s language, φk,s,ld to choose the word.

3.2.1 Multilingual Priors

As in the case of a monolingual walk over the concept hierarchy, we want to provide

guidance to the multilingual model as to which parts of the hierarchy it should favor.

We do this by defining a prior distributions over the variables ω, β, and φ discussed

above. This is more difficult than with LDAWN because we are dealing with multiple

languages; we shouldn’t allow one language to overwhelm the other because of quirks

of the corpus or WordNet.

To define the priors τ , α, and η, we will define frequency counts, specific to to

a word and language, and hyponym counts, specific to synsets but independent of

language.

As before, we take our frequency counts from a balanced corpus and derived a

count fl(w) for every token w in language l. We now create a normalizer Fl for each
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language,

Fl =
∑

w∈WNl

fl(w).

Note that we are not summing over all of the tokens in the language, only the tokens

which appear in the language’s WordNet. This prevents the coverage of a WordNet

from affecting the relative strength of a language. which gives us a raw normalized

count for each token w,

f̂l(w) =
fl(w)

Fl
. (3.1)

These counts are at the token level, but we need counts at the synset level. We

define hypol(s) to be the multiset all of the tokens in language l that are a part of

a synset that is a hyponym of synset s, and we define s[l] to be all of the words in

language l that are in synset s. This allows us to define a hyponym count for a synset s

h(s) =
∑
l

∑
w∈s[l]

f̂l(w)︸ ︷︷ ︸
words in synset

+
∑

t∈hypol(s)

f̂l(t)︸ ︷︷ ︸
descendant synsets

. (3.2)

Note that the synset counts are independent of language and reflect the preferences of

all languages.

We now have all of the counts needed to define our priors: the prior for transitions

(synset to synset), the prior for emission (synset to word), and the prior for stopping

(moving from choosing synset to choosing a word).

Transition The transition prior for transitioning from synset s to synset t is inde-

pendent of language, is proportional to the hyponym count of each synset, and is

defined as

βs,t ≡
h(t)∑

v∈c(s) h(v)
, (3.3)

where c(s) is the set of all the direct hyponyms of s.
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Emission The emission prior is not language independent. For a synset s, its

emission probability over its words in language l is proportional to the normalized

frequency.

ηl,w ≡
f̂l(w)∑
u∈s[l]

, (3.4)

where s[l] is the set of all the words in synset s from language l.

Stop The prior probability for whether to stop at a node and emit a word or continue

by transitioning to a child combines the counts used in the previous two definitions.

The probability of stopping is proportional to the total counts of all tokens in the

synset in all languages, and the probability of continuing is proportional to the total

of all hyponym counts. Thus, the prior probability of stopping is

σs ≡
∑

l

∑
w∈s[l] fl(w)∑

l

∑
w∈s[l] fl(w) +

∑
t∈c(s) h(t)

. (3.5)

For these experiments, we used the British National Corpus (BNC) (University

of Oxford, 2006) as our English balanced corpus and the Digitales Wörterbuch der

deutschen Sprache (DWDS) (Geyken, 2007)

3.2.2 Specifying the Generative Process

We introduced the new aspects of this model in the previous section: the language

of documents, a per-language distribution over words for each synset and a separate

stopping probability for each synset (these are depicted as a generative model in

Figure 3.1). The generative process for multilingual LDAWN is as follows (differences

from LDAWN are highlighted in italics):

1. For each topic, k ∈ {1, . . . ,K}

(a) For each synset h ∈ {1, . . . ,H} in the hierarchy

i. Choose transition probabilities βk,h ∼ Dir(Sτh).
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HK

MN
θd zd,n wd,nα

S

βk,h

τh

Λd,n ld

ωk,h

σd

L
φl,k,h

ηl,h

Figure 3.1: The graphical model for ML-LDAWN. The bottom plate is similar to LDA,
but with the addition of a known language for each document. The top plate replaces
the multinomial distribution of LDA with a hierarchical distribution over words from
an ontology with known information content (the shaded hyperparameters).

ii. Choose stopping probabilities ωk,h ∼ Beta(Sσ, S(1− σ),).

iii. For each language l, choose emission probabilities φk,h,l ∼ Dir(ηh,l).

2. For each document d ∈ {1, . . . , D} w ith language l

(a) Select a topic distribution θd ∼ Dir(τ)

(b) For each word n ∈ {1, . . . , Nd}

i. Select a topic zd,n ∼ Mult(θd)

ii. Create a path Λd,n starting with the root node h0.

iii. Given the current node h:

A. Choose whether to emit a word with probability ωh.

B. I f we chose to emit a word, choose wn ∼ Mult(φzd,n,h,l).

C. Otherwise, choose the next node in the walk h′ ∼ Mult(βzd,n,h); add

the step λh,h′ to the path Λd,n. Repeat with h′ as the current node.
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3.3 Inference

We use posterior inference to discover the transition probabilities, stopping probabili-

ties, and emission probabilities of the multilingual distributions over the synsets and

words in WordNet in addition to the per-document topic distributions and topic

assignments of each word. We are given the language and words in each document

and the information content information as described in section 3.2.1.

Inference in ML-LDAWN proceeds in much the same way as for LDAWN. The

probability of a word in position u having topic y and path π in document d with

language l given the transition, stopping, and emission distributions for the multilingual

WordNet walks is

p(zd,u = y,Λd,u = π | θd,β,ω,φ) = (3.6)

θd,k︸︷︷︸
topic

∏
(i,j)∈λ

[(1− ωi)βλ,i,j]︸ ︷︷ ︸
continue, pick child

ωλendφλend,ld,wu︸ ︷︷ ︸
stop, emit word

. (3.7)

As in Section 2.2, we use Gibbs sampling to sample the current topic and path of each

word, conditioning on the topic and paths of all of the other words.

As before, we integrate out all of the multinomial random variables

p(zd,u = y,Λd,u = π | z−ud ,Λ−u, S, τ ,α,σ)

=

∫
β

∫
ω

∫
φ

∫
θd

p(zd,u = y,Λd,u | θd,β,ω,φ, z−u,Λ−u)

∝ td,y + αy
td,· +

∑
k αk︸ ︷︷ ︸

topic

∏
(i,j)∈π

[(
ok,i,> + Sσ

ck,i,· + S

)(
by,i,j + Sτi,j
bk,i,· + S

)]
︸ ︷︷ ︸

continue, pick child(
oπend,⊥ + S(1− σπend)

oπend,· + S

)(
fld,πend,wu + ηld,πend,wu
fld,πend,· +

∑
k ηld,πend,k

)
︸ ︷︷ ︸

stop, emit word

(3.8)
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
president member bericht volk kommission

praesident mitglied mr group commission
gentleman community report gruppe union

herr menge fact people union
land measure tatsache member council

country markt amendment mitglied rat
european market direktive menschheit house
woman volk directive world parlament

frau people bedingung place year
gebiet relation member time jahr
area beziehung mitglied item frage

europaeer region agreement country proposal
development level thema conflict question
entwicklung fund information widerstreit parliament

citizen schritt information man bundestag

Table 3.3: Topics discovered by a MLDA on the Europarl dataset. Observe that topics
have consistency across languages. For instance, in topic 4, “menschheit” (humanity),
“widerstreit” (conflict), and “mitglied” (member) are clustered together with the
English words “people,” “conflict,” and “member.”

3.4 Experiments

In this section we show evidence that this model can discover consistent topics on

multilingual datasets. We use a dataset called the Europarl corpus (Koehn, 2005),

which is a collection of the proceedings of the European parliament translated into

many of the languages of the countries in the European Union. We use the English and

German versions and create documents based on the chapter breaks in the proceedings

(a chapter is debate / discussion on a single topic). Note that even though these are

parallel texts, we ignore the parallel component of these data (in the next chapter,

we show how unaligned algorithms like these can recover the connections between

documents).
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3.5 Discussion

ML-LDAWN relies on having complete and accurate translations of WordNet in

multiple languages. German has one of the more complete WordNet mappings, but

is still relatively incomplete. Most other languages are even more sparse, and the

model has no way to overcome a lack of connections, even if there are strong cues

from the data that concepts should be related. Even worse, if a language lacks a

WordNet, we cannot apply the method of this chapter at all.

In the next chapter, we propose a method that overcomes this limitation by learning

and adapting a mapping across languages as it learns multilingual topics. It does so

in a way that can adapt to relatively small amounts of interlingual annotation, in

contrast to the method outlined here.
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Chapter 4

Learning a Shared Semantic Space

In the previous chapter, we developed a multilingual topic model that required

WordNets to be available in the languages of interest. In this chapter, we develop a

model that does not require such a labor-intensive investment to create a topic model

that is consistent across languages. Like the model of the previous chapter, we do not

assume that we have text that is parallel at the sentence or paragraph level.

We propose the MUltilingual TOpic model for unaligned text (MuTo). MuTo

does not assume that it is given any explicit parallelism but instead discovers a

parallelism at the vocabulary level. To find this parallelism, the model assumes that

similar themes and ideas appear in both languages. For example, if the word “Hund”

appears in the German side of the corpus, “hound” or “dog” should appear somewhere

on the English side.

4.1 Learning Dictionaries with Text Alone

The assumption that similar terms will appear in similar contexts has also been used

to build lexicons from non-parallel but comparable corpora. What makes contexts

similar can be evaluated through such measures as co-occurrence (Rapp, 1995; Tanaka

and Iwasaki, 1996) or tf-idf (Fung and Yee, 1998). Although the emphasis of our work
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is on building consistent topic spaces and not the task of building dictionaries per se,

good translations are required to find consistent topics. However, we can build on

successful techniques at building lexicons across languages.

This paper is organized as follows. We detail the model and its assumptions in

Section 4.2, develop a stochastic expectation maximization (EM) inference procedure

in Section 4.3, discuss the corpora and other linguistic resources necessary to evaluate

the model in Section 4.4, and evaluate the performance of the model in Section 4.5.

4.2 Model

We assume that, given a bilingual corpus, similar themes will be expressed in both

languages. If “dog,” “bark,” “hound,” and “leash” are associated with a pet-related

topic in English, we can find a set of pet-related words in German without having

translated all the terms. If we can guess or we are told that “Hund” corresponds to

one of these words, we can discover that words like “Leinen,” “Halsband,” and “Bellen”

(“leash,” “collar,” and “bark,” respectively) also appear with “Hund” in German,

making it reasonable to guess that these words are part of the pet topic as expressed

in German.

These steps—learning which words comprise topics within a language and learning

word translations across languages—are both part of our model. In this section,

we describe MuTo’s generative model, first describing how a matching connects

vocabulary terms across languages and then describing the process for using those

matchings to create a multilingual topic model.

4.2.1 Matching across Vocabularies

We posit the following generative process to produce a bilingual corpus in a source

language S and a target language T . First, we select a matching m over terms in both
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languages. The matching consists of edges (vi, vj) linking a term vi in the vocabulary

of the first language VS to a term vj in the vocabulary of the second language VT . A

matching can be viewed as a bipartite graph with the words in one language VS on

one side and VT on the other. A word is either unpaired or linked to a single node in

the opposite language.

The use of a matching as a latent parameter is inspired by the matching canonical

correlation analysis (MCCA) model (Haghighi et al., 2008), another method that

induces a dictionary from arbitrary text. MCCA uses a matching to tie together

words with similar meanings (where similarity is based on feature vectors representing

context and morphology). We have a slightly looser assumption; we only require

words with similar document level contexts to be matched. Another distinction is

that instead of assuming a uniform prior over matchings, as in MCCA, we consider

the matching to have a regularization term πi,j for each edge from source word vi to

target word vj. We prefer larger values of πi,j in the matching.

This parameterization allows us to incorporate prior knowledge derived from

morphological features, existing dictionaries, or dictionaries induced from non-parallel

text. We can also use the knowledge gleaned from parallel corpora to understand

the non-parallel corpus of interest. Sources for the matching prior π are discussed in

Section 4.4.

4.2.2 From Matchings to Topics

In MuTo, documents are generated conditioned on the matching. As in LDA,

documents are endowed with a distribution over topics. Instead of being distributions

over terms, topics in MuTo are distributions over pairs in the matching m. Going

back to our intuition, one such pair might be (“hund”, “hound”), and it might have

high probability in a pet-related topic. Another difference from LDA is that unmatched

terms don’t come from a topic but instead come from a unigram distribution specific to
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each language. The full generative process of the matching and both corpora follows:

1. Choose a matching m across languages where the probability of an edge mi,j

being included is proportional to πi,j

2. Choose multinomial term distributions:

(a) For languages L ∈ {S, T}, choose background distributions ρL ∼ Dir(γ)

over the words not in m.

(b) For topic index i = {1, . . . , K}, choose topic βi ∼ Dir(λ) over the pairs

(vS, vT ) in m.

3. For each document d = {1, . . . D} with language ld:

(a) Choose topic weights θd ∼ Dir(α).

(b) For each n = {1, . . . ,Md} :

i. Choose topic assignment zn ∼ Mult(1, θd).

ii. Choose cn from {matched, unmatched} uniformly at random.

iii. If cn matched, choose a pair ∼ Mult(1, βzn(m)) and select the member

of the pair consistent with ld, the language of the document, for wn.

iv. If cn is unmatched, choose wn ∼ Mult(1, ρld).

Both ρ and β are distributions over words. The background distribution ρS is a

distribution over the (|VS| − |m|) words not in m, ρT similarly for the other language,

and β is a distribution over the word pairs in m. Because a term is either part of a

matching or not, these distributions partition the vocabulary.

The background distribution is the same for all documents. We choose not to have

topic-specific distributions over unmatched words for two reasons. The first reason is

to prevent topics from having divergent themes in different languages. For example,

even if a topic had the matched pair (“Turkei”, “Turkey”), distinct language topic

multinomials over words could have “Istanbul,” “Atatürk,” and “NATO” in German

but “stuffing,” “gravy,” and “cranberry” in English. The second reason is to encourage
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Figure 4.1: Graphical model for MuTo. The matching over vocabulary terms m
determines whether an observed word wn is drawn from a topic-specific distribution β
over matched pairs or from a language-specific background distribution ρ over terms
in a language.

very frequent nouns that can be well explained by a language-specific distribution

(and thus likely not to be topical) to remain unmatched.

4.3 Inference

Given two corpora, our goal is to infer the matching m, topics β, per-document topic

distributions θ, and topic assignments z. We solve this posterior inference problem

with a stochastic EM algorithm (Diebolt and Ip, 1996). There are two components of

our inference procedure: finding the maximum a posteriori matching and sampling

topic assignments given the matching.

We first discuss estimating the latent topic space given the matching. We use a

collapsed Gibbs sampler (Griffiths and Steyvers, 2004) to sample the topic assignment

of the nth word of the dth document conditioned on all other topic assignments and the

matching, integrating over topic distributions β and the document topic distribution

θ. Dd,i is the number of words assigned to topic i in document d and Ci,t is the

number of times either of the terms in pair t has been assigned topic i. For example,
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if t = (hund, hound), “hund” has been assigned topic three five times, and “hound”

has been assigned topic three twice, then C3,t = 7.

The conditional distribution for the topic assignment of matched words is

p(zd,n = i|z−i,m) ∝(
Dd,i+

α
K

Dd,·+α

)(
Ci,m(wn)+

λ
|m|

Ci,·+λ

)
,

and unmatched words are assigned a topic based on the document topic assignments

alone.

Now, we choose the maximum a posteriori matching given the topic assignments

using the Hungarian algorithm (Lawler, 1976), a general method for finding a maximal

bipartite matching given two vertex sets and edge weights. We first consider how

adding a single edge to the matching impacts the likelihood. Adding an edge (i, j)

means that the the occurrences of term i in language S and term j in language T

come from the topic distributions instead of two different background distributions.

So we must add the likelihood contribution of these new topic-specific occurrences to

the likelihood and subtract the global language-multinomial contributions from the

likelihood.

Using our posterior estimates of topics β and ρ from the Markov chain, the number

of times word i appears in language l, Nl,i, and the combined topic count for the

putative pair Ck,(i,j), the resulting weight between term i and term j is

µi,j =
∑
k

Ck,(i,j) log βk,(i,j) (4.1)

−NS,i log ρS,i −NT,j log ρT,j + log πi,j.

Maximizing the sum of the weights included in our matching also maximizes the

posterior probability of the matching.1

1Note that adding a term to the matching also potentially changes the support of β and ρ. Thus,
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Intuitively, the matching encourages words to be paired together if they appear

in similar topics, are not explained by the background language model, and are

compatible with the preferences expressed by the matching prior πi,j . The words that

appear only in specialized contexts will be better modeled by topics rather than the

background distribution.

MuTo requires an initial matching which can subsequently be improved. In all

our experiments, the initial matching contained all words of length greater than five

characters that appear in both languages. For languages that share similar orthography,

this produces a high precision initial matching (Koehn and Knight, 2002).

This model suffers from overfitting; running stochastic EM to convergence results

in matchings between words that are unrelated. We correct for overfitting by stopping

inference after three M steps (each stochastic E step used 250 Gibbs sampling iterations)

and gradually increasing the size of the allowed matching after each iteration, as

in (Haghighi et al., 2008). Correcting for overfitting in a more principled way, such

as by explicitly controlling the number of matchings or employing a more expressive

prior over the matchings, is left for future work.

4.4 Data

We studied MuTo on two corpora with four sources for the matching prior. We use a

matching prior term π in order to incorporate prior information about which matches

the model should prefer. Which source is used depends on how much information is

available for the language pair of interest. The following prior sources are listed in

order of decreasing availability of precompiled bilingual resources.

the counts associated with terms i and j appear in the estimate for both β (corresponding to the log
likelihood contribution if the match is included) and ρ (corresponding to the log likelihood if the
match is not added); this is handled by the Gibbs sampler across M-step updates because the topic
assignments alone represent the state.
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Pointwise Mutual Information from Parallel Text Even if our dataset of

interest is not parallel, we can exploit information from available parallel corpora in

order to formulate π. For one construction of π, we computed the pointwise mutual

information (PMI) for terms appearing in the translation of aligned sentences in a

small German-English news corpus (Koehn, 2000). Specifically, we use

PMIi,j = log
si,j
si,·s·,j

,

where si,j is the number of sentences that feature the word i in the source language

and j in the translated version of the sentence in the target language; where si,· is

the number of sentences in the source language with the word i; and where s·,j is the

number of sentences in the target language with the word j.

Dictionary If a machine readable dictionary is available, we can use the existence of

a link in the dictionary as our matching prior. We used the Ding dictionary (Richter,

2008); terms with N translations were given weight 1
N

with all of the possible transla-

tions given in the dictionary (connections which the dictionary did not admit were

effectively disallowed). This gives extra weight to unambiguous translations.

MCCA For a bilingual corpus, matching canonical correlation analysis finds a

mapping from latent points zi, zj ∈ Rn to the observed feature vector f(vi) for a term

vi in one language and f(vj) for a term vj in the second language. We run the MCCA

algorithm on our bilingual corpus to learn this mapping and use

log πi,j ≈ −||zi − zj||.

This distance between preimages of feature vectors in the latent space is proportional

to the weight used in MCCA algorithm to construct matchings. We used the same
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method for selecting an initial matching for MCCA as for MuTo. Thus, identical

pairs were used as the initial seed matching rather than randomly selected pairs from

a dictionary. When we used MCCA as a prior, we ran MCCA on the same dataset as

a first step to compute the prior weights.

Edit Distance If there are no reliable resources for our language pair but we assume

there is significant borrowing or morphological similarity between the languages, we

can use string similarity to formulate π. We used

πi,j =
1

0.1 + ED(vi, vj)
.

Although deeper morphological knowledge could be encoded using a specially derived

substitution penalty, all substitutions and deletions were penalized equally in our

experiments.

4.4.1 Corpora

Although MuTo is designed with non-parallel corpora in mind, we use parallel corpora

in our experiments for the purposes of evaluation. We emphasize that the model does

not use the parallel structure of the corpus. Using parallel corpora also guarantees

that similar themes will be discussed, one of our key assumptions.

First, we analyzed the German and English proceedings of the European Parlia-

ment (Koehn, 2005), where each chapter is considered to be a distinct document. Each

document on the English side of the corpus has a direct translation on the German

side; we used a sample of 2796 documents.

Another corpus with more variation between languages is Wikipedia. A bilin-

gual corpus with explicit mappings between documents can be assembled by taking

Wikipedia articles that have cross-language links between the German and English

versions. The documents in this corpus have similar themes but can vary considerably.
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Documents often address different aspects of the same topic (e.g. the English article

will usually have more content relevant to British or American readers) and thus are

not generally direct translations as in the case of the Europarl corpus. We used a

sample of 2038 titles marked as German-English equivalents by Wikipedia metadata.

We used a part of speech tagger (Schmid, 1994) to remove all non-noun words.

Because nouns are more likely to be constituents of topics (Griffiths et al., 2005)

than other parts of speech, this ensures that terms relevant to our topics will still be

included. It also prevents uninformative but frequent terms, such as highly inflected

verbs, from being included in the matching.2 The 2500 most frequent terms were

used as our vocabulary. Larger vocabulary sizes make computing the matching more

difficult as the full weight matrix scales as V 2, although this could be addressed by

filtering unlikely weights.

4.5 Experiments

We examine the performance of MuTo on three criteria. First, we examine the

qualitative coherence of learned topics, which provides intuition about the workings

of the model. Second, we assess the accuracy of the learned matchings, which ensures

that the topics that we discover are not built on unreasonable linguistic assumptions.

Last, we investigate the extent to which MuTo can recover the parallel structure of

the corpus, which emulates a document retrieval task: given a query document in the

source language, how well can MuTo find the corresponding document in the target

language?

In order to distinguish the effect of the learned matching from the information

already available through the matching prior π, for each model we also considered a

“prior only” version where the matching weights are held fixed and the matching uses

2Although we used a part of speech tagger for filtering, a stop word filter would yield a similar
result if a tagger or part of speech dictionary were unavailable.
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Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
apple:apple nbsp:nbsp bell:bell lincoln:lincoln quot:quot
code:code pair:jahr nobel:nobel abraham:abraham time:schatten

anime:anime exposure:kategorie alfred:alfred union:union world:kontakt
computer:computer space:sprache claim:ampere united:nationale history:roemisch

style:style bind:bild alexander:alexander president:praesident number:nummer
character:charakter price:thumb proton:graham party:partei math:with

ascii:ascii belt:zeit telephone:behandlung states:status term:zero
line:linie decade:bernstein experiment:experiment state:statue axiom:axiom

program:programm deal:teil invention:groesse republican:mondlandung system:system
software:software name:name acoustics:strom illinois:illinois theory:theorie

Table 4.1: Five topics from a twenty topic MuTo model trained on Wikipedia using
edit distance as the matching prior π. Each topic is a distribution over pairs; the top
pairs from each topic are shown. Topics display a semantic coherence consistent with
both languages. Correctly matched word pairs are in bold.

only the prior weights (i.e., only πi,j is used in Equation 4.2).

4.5.1 Learned Topics

To better illustrate the latent structure used by MuTo and build insight into the

workings of the model, Table 4.1 shows topics learned from German and English

articles in Wikipedia. Each topic is a distribution over pairs of terms from both

languages, and the topics seem to demonstrate a thematic coherence. For example,

Topic 0 is about computers, Topic 2 concerns science, etc.

Using edit distance as a matching prior allowed us to find identical terms that

have similar topic profiles in both languages such as “computer,” “lovelace,” and

“software.” It also has allowed us to find terms like “objekt,” “astronom,” “programm,”

and “werk” that are similar both in terms of orthography and topic usage.

Mistakes in the matching can have different consequences. For instance, “earth”

is matched with “stickstoff” (nitrogen) in Topic 2. Although the meanings of the

words are different, they appear in sufficiently similar science-oriented contexts that it

doesn’t harm the coherence of the topic.

In contrast, poor matches can dilute topics. For example, Topic 4 in Table 4.1

seems to be split between both math and Roman history. This encourages matches

between terms like “rome” in English and “römer” in German. While “römer” can

refer to inhabitants of Rome, it can also refer to the historically important Danish
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Topic 0 Topic 1
wikipedia:agatha alexander:temperatur

degree:christie country:organisation
month:miss city:leistung

director:hercule province:mcewan
alphabet:poirot empire:auftreten

issue:marple asia:factory
ocean:modern afghanistan:status

atlantic:allgemein roman:auseinandersetzung
murder:harz government:verband

military:murder century:fremde

Table 4.2: Two topics from a twenty topic MuTo model trained on Wikipedia with
no prior on the matching. Each topic is a distribution over pairs; the top pairs from
each topic are shown. Without appropriate guidance from the matching prior, poor
translations accumulate and topics show no thematic coherence.

mathematician and astronomer of the same name. This combination of different

topics is further reinforced in subsequent iterations with more Roman / mathematical

pairings.

Spurious matches accumulate over time, especially in the version of MuTo with

no prior. Table 4.2 shows how poor matches lead to a lack of correspondence between

topics across languages. Instead of developing independent, internally coherent topics

in both languages (as was observed in the näıve LDA model in Table 3.1), the arbitrary

matches pull the topics in many directions, creating incoherent topics and incorrect

matches.

4.5.2 Matching Translation Accuracy

Given a learned matching, we can ask what percentage of the pairs are consistent with

a dictionary (Richter, 2008). This gives an idea of the consistency of topics at the

vocabulary level.

These results further demonstrate the need to influence the choice of matching

pairs. Figure 4.2 shows the accuracy of multiple choices for computing the matching

prior. If no matching prior is used, essentially no correct matches are chosen.

Models trained on Wikipedia have lower vocabulary accuracies than models trained
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on Europarl. This reflects a broader vocabulary, a less parallel structure, and the

limited coverage of the dictionary. For both corpora, and for all prior weights, the

accuracy of the matchings found by MuTo is nearly indistinguishable from matchings

induced by using the prior weights alone. Adding the topic structure neither hurts

nor helps the translation accuracy.

4.5.3 Matching Documents

While translation accuracy measures the quality of the matching learned by the

algorithm, how well we recover the parallel document structure of the corpora measures

the quality of the latent topic space MuTo uncovers. Both of our corpora have explicit

matches between documents across languages, so an effective multilingual topic model

should associate the same topics with each document pair regardless of the language.

We compare MuTo against models on bilingual corpora that do not have a

matching across languages: LDA applied to a multilingual corpus using a union and

intersection vocabulary. For the union vocabulary, all words from both languages are

retained and the language of documents is ignored. Posterior inference in this setup

effectively partitions the topics into topics for each language, as in Table 3.1. For the

intersection vocabulary, the language of the document is ignored, but all terms in one

language which don’t have an identical counterpart in the other are removed.

If ML-LDAWN finds a consistent latent topic space, then the distribution of topics

θ for matched document pairs should be similar. For each document d, we computed

the the Hellinger distance between its θ and all other documents’ θ and ranked them.

The proportion of documents less similar to d than its designated match measures

how consistent our topics are across languages.

These results are presented in Figure 4.3. For a truly parallel corpus like Europarl,

the baseline of using the intersection vocabulary did very well (because it essentially

matched infrequent nouns). On the less parallel Wikipedia corpus, the intersection
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baseline did worse than all of the MuTo methods. On both corpora, the union

baseline did little better than random guessing.

Although morphological cues were effective for finding high-accuracy matchings,

this information doesn’t necessarily match documents well. The edit weight prior on

Wikipedia worked well because the vocabulary of pages varies substantially depending

on the subject, but methods that use morphological features (edit distance and MCCA)

were not effective on the more homogeneous Europarl corpus, performing little better

than chance.

Even by themselves, our matching priors do a good job of connecting words across

the languages’ vocabularies. On the Wikipedia corpus, all did better than the LDA

baselines and MuTo without a prior. This suggests that an end-user interested

in obtaining a multilingual topic model could obtain acceptable results by simply

constructing a matching using one of the schemes outlined in Section 4.4 and running

MuTo using this static matching.

However, MuTo can perform better if the matchings are allowed to adjust to

reflect the data. For many conditions, MuTo with the matchings updated using the

weights in Equation 4.2 performs better on the document matching task than using

the matching prior alone.

4.6 Discussion

In this work, we presented MuTo, a model that simultaneously finds topic spaces and

matchings in multiple languages. In evaluations on real-world data, MuTo recovers

matched documents better than the prior alone. This suggests that MuTo can be

used as a foundation for multilingual applications using the topic modeling formalism

and as an aid in corpus exploration.

Corpus exploration is especially important for multilingual corpora, as users are
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often more comfortable with one language in a corpus than the other. Using a

more widely used language such as English or French to provide readable signposts,

multilingual topic models could help uncertain readers find relevant documents in the

language of interest.

MuTo makes no linguistic assumptions about the input data that precludes finding

relationships and semantic equivalences on symbols from other discrete vocabularies.

Data are often presented in multiple forms; models that can explicitly learn the

relationships between different modalities could help better explain and annotate

pairings of words and images, words and sound, genes in different organisms, or

metadata and text.

With models like MuTo, we can remove the assumption of monolingual corpora

from topic models. Exploring this new latent topic space also offers new opportunities

for researchers interested in multilingual corpora for machine translation, linguistic

phylogeny, and semantics.

Conversely, adding more linguistic assumptions such as incorporating local syntax

in the form of feature vectors is an effective way to find translations without using

parallel corpora. Using such local information within MuTo, rather than just as a

prior over the matching, would allow the quality of translations to improve.

The lack of local context was also the major lacuna that prevented the model

discussed in Chapter 2 from being competitive with state of the art methods. In the

next chapter, we present a model that incorporates local context by integrating a

topic model with local context as described by a dependency parse tree.
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Figure 2: Each group corresponds to a method for comput-
ing the weights used to select a matching; each group has
values for 5, 10, 20, and 50 topics. The x-axis is the per-
centage of terms where a translation was found in a dictio-
nary. Where applicable, for each matching prior source, we
compare the matching found using MUTO with a matching
found using only the prior. Because this evaluation used
the Ding dictionary [21], the matching prior derived from
the dictionary is not shown.
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Figure 3: Each group corresponds to a method for creat-
ing a matching prior π; each group has values for 5, 10,
20, and 50 topics. The full MUTO model is also com-
pared to the model that uses the matching prior alone to
select the matching. The x-axis is the proportion of docu-
ments whose topics were less similar than the correct match
across languages (higher values, denoting fewer misranked
documents, are better).

Figure 4.2: Each group corresponds to a method for computing the weights used to
select a matching; each group has values for 5, 10, 25, and 50 topics. The x-axis
is the percentage of terms where a translation was found in a dictionary. Where
applicable, for each matching prior source, we compare the matching found using
MuTo with a matching found using only the prior. Because this evaluation used the
Ding dictionary (Richter, 2008), the matching prior derived from the dictionary is not
shown.
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Figure 3: Each group corresponds to a method for creat-
ing a matching prior π; each group has values for 5, 10,
20, and 50 topics. The full MUTO model is also com-
pared to the model that uses the matching prior alone to
select the matching. The x-axis is the proportion of docu-
ments whose topics were less similar than the correct match
across languages (higher values, denoting fewer misranked
documents, are better).

Figure 4.3: Each group corresponds to a method for creating a matching prior π; each
group has values for 5, 10, 25, and 50 topics. The full MuTo model is also compared
to the model that uses the matching prior alone to select the matching. The x-axis is
the proportion of documents whose topics were less similar than the correct match
across languages (higher values, denoting fewer misranked documents, are better).
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Chapter 5

Syntactic Topic Models

In the previous chapters, a recurring theme during error analysis was that the models

we considered treated words as exchangeable observations. As we saw in Chapter 2,

which meaning a word takes depends upon the local context (e.g. “After I withdrew

some money from the bank, I ran down to the river’s bank and fed the ducks.”).

Similarly, we might want to consider different translations of a word depending on the

local context.

Although we do not fully integrate local context into this thesis, in the following

chapter we provide a way of looking at syntax that is compatible with both the

statistical formalisms that we use for modeling the semantic information provided by

topic models and the linguistic representations of the structure of a sentence’s syntax.

5.1 Combining Semantics and Syntax

When we read a sentence, we use two kinds of reasoning: one for understanding its

syntactic structure and another for integrating its meaning into the wider context of

other sentences, other paragraphs, and other documents. Both mental processes are

crucial, and psychologists have found that they are distinct. A syntactically correct

sentence that is semantically implausible takes longer for people to understand than
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its semantically plausible counterpart (Rayner et al., 1983). Furthermore, recent

brain imaging experiments have localized these processes in different parts of the

brain (Dapretto and Bookheimer, 1999). Both of these types of reasoning should be

accounted for in a probabilistic model of language.

To see how these mental processes interact, consider the following sentence from a

travel brochure,

Next weekend, you could be relaxing in .

How do we reason about filling in the blank? First, because the missing word is the

object of a preposition, it should act like a noun, perhaps a location like “bed,” “school,”

or “church.” Second, because the document is about travel, we expect travel-related

terms. This further restricts the space of possible terms, leaving alternatives like

“Nepal,” “Paris,” or “Bermuda” as likely possibilities. Each type of reasoning restricts

the likely solution to a subset of words, but the best candidates for the missing word

are in their intersection.

In this chapter we develop a probabilistic model of language that mirrors this

process. Current models, however, tend to focus on finding and exploiting either

syntactic or thematic regularities. On one hand, probabilistic syntax models capture

how different words are used in different parts of speech and how those parts of speech

are organized into sentences (Charniak, 1997; Collins, 2003; Klein and Manning,

2002). On the other hand, probabilistic topic models find patterns of words that are

thematically related in a large collection of documents, which we review in Chapter 1.

Each type of model captures one kind of regularity in language, but ignores the

other kind of regularity. Returning to the example, suppose that the correct answer is

the noun “Bermuda.” A syntax model would fill in the missing word with a noun,

but would ignore the semantic distinction between words like “bed” and “Bermuda.”1

1A proponent of lexicalized parsers might argue that conditioning on the word might be enough
to answer this question completely. However, many of the most frequently used words have such
broad meanings (e.g. “go”) that knowledge of the broader context is necessary.
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A topic model would consider travel words to be more likely than others, but would

ignore functional differences between words like “sailed” and “Bermuda.” To arrive at

“Bermuda” with higher probability requires a model that simultaneously accounts for

both syntax and theme.

Thus, our model assumes that language arises from an interaction between syntactic

regularities at the sentence level and thematic regularities at the document level. The

syntactic component examines the sentence at hand and restricts attention to nouns;

the thematic component examines the rest of the document and restricts attention to

travel words. Our model makes its ultimate prediction from the intersection of these

two restrictions. As we will see, these modeling assumptions lead to a more predictive

model of language.

Both topic models and syntax models assume that each word of the data is drawn

from a mixture component, a distribution over a vocabulary that represents recurring

patterns of words. The central difference between topic models and syntax models is

how the component weights are shared: topic models are bag-of-words models where

component weights are shared within a document; syntax models share components

within a functional category (e.g. the production rules for non-terminals). Components

learned from these assumptions reflect either document-level patterns of co-occurrence,

which look like themes, or tree-level patterns of co-occurrence, which look like syntactic

elements. In both topic models and syntax models, Bayesian non-parametric methods

are used to embed the choice of the number of components into the model (Teh et al.,

2006; Finkel et al., 2007). These methods further allow for new components to appear

with new data.

In the syntactic topic model (STM), the subject of this chapter, the components

arise from both document-level and sentence-level distributions and therefore reflect

both syntactic and thematic patterns in the texts. This captures the two types of

understanding described above: the document-level distribution over components
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restricts attention to those that are thematically relevant; the tree-level distribution

over components restricts attention to those that are syntactically appropriate. We

emphasize that rather than choose between a thematic component or syntactic com-

ponent from its appropriate context, as is done in the model of Griffiths et al (2005),

components are drawn that are consistent with both sets of weights.

This complicates posterior inference algorithms and requires developing new

methodology in hierarchical Bayesian modeling of language. However, it leads to

a more expressive and predictive model. In Section 5.2 we review latent variable

models for syntax and Bayesian non-parametric methods. In Section 5.3, building on

these formalisms, we present the STM. In Section 5.3.2 we derive a fast approximate

posterior inference algorithm based on variational methods. Finally, in Section 5.4

we present qualitative and quantitative results on both synthetic text and a large

collection of parsed documents.

5.2 Background: Topics and Syntax

The approach of this chapter develops the ideas behind the topic models introduced in

Chapter 1. As we saw in Chapter 2, topic models can be viewed as learning meaning

in a corpus, representing the semantic space of a document. For convenience, we

reproduce the graphical model for LDA in Figure 5.1(a). In addition to LDA, this

model builds on probabilistic syntax models and Bayesian non-parametrics, which we

describe in this section.

5.2.1 Probabilistic Syntax Models

LDA is effective at capturing semantic correlations between words, but it ignores

syntactic correlations and connections. The finite tree with independent children

model (FTIC) can be seen as the syntactic complement to LDA (Finkel et al., 2007).
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Figure 5.1: For LDA (left), topic distributions βk are drawn for each of the K topics,
topic proportions θd are drawn for each of each of the M documents, and topic
assignments zd,n and words wd,n are drawn for each of the Nd words in a document.
For FTIC (right), each state has a distribution over words, β, and a distribution over
successors, π. Each word is associated with a hidden state zn, which is chosen from
the distribution πzp(n)

, the transition distribution based on the parent node’s state.

As in LDA, this model assumes that observed words are generated by latent states.

However, rather than considering words in the context of their shared document, the

FTIC considers each word in the context of its sentence as determined by its location

in a dependency parse (we introduce the dependency representation in Section 1.2.1).

The FTIC embodies a generative process over a collection of sentences with given

parses. It is parameterized by a set of “syntactic states,” where each state is associated

with three parameters: a distribution over terms, a set of transition probabilities to

other states, and a probability of being chosen as the root state. Each sentence is

generated by traversing the structure of the parse tree. For each node, draw a syntactic

state from the transition probabilities of its parent (or root probabilities) and draw

the word from the corresponding distribution over terms. A parse of a sentence with

three words is depicted as a graphical model in Figure 5.1.

While LDA is constructed to analyze a collection of documents, the FTIC is

constructed to analyze a collection of parsed sentences. The states discovered through
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posterior inference correlate with part of speech labels (Finkel et al., 2007). For

LDA the components respect the way words co-occur in documents. For FTIC the

components respect the way words occur within parse trees.

5.2.2 Random Distributions and Bayesian non-parametric

methods

Many recently developed probabilistic models of language, including those described

above, employ distributions as random variables. These random distributions are

sometimes a prior over a parameter, as in traditional Bayesian statistics, or a latent

variable within the model. For example, in LDA the topic proportions and topics are

random distributions (this is discussed in greater detail in Section 1.1.2), where we

also introduce the Dirichlet distribution); in the FTIC, the transition probabilities

and term generating distributions are random.

Both the FTIC and LDA assume that the number of latent components, i.e.,

topics or syntactic states, is fixed. Choosing this number a priori can be difficult.

Recent research has extended Bayesian non-parametric methods to build more flexible

models where the number of latent components is unbounded and is determined by the

data (Teh et al., 2006; Liang and Klein, 2007). The STM will use this methodology.

We first describe the stick breaking distribution, a distribution over the infinite

simplex. The idea behind this distribution is to draw an infinite number of Tau random

variables, i.e., values between zero and one, and then combine them to form a vector

whose infinite sum is one. This can be understood with a stick-breaking metaphor.

Consider a unit length stick that is infinitely broken into smaller and smaller pieces.

The length of each successive piece is determined by taking a random proportion of

the remaining stick. The random proportions are drawn from a Tau distribution,

µk ∼ Tau(1, α),
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and the resulting stick lengths are defined from these breaking points,

τk = µk

k−1∏
l=1

(1− µl).

With this process, the vector τ is a point on the infinite simplex (Sethuraman, 1994).

This distribution is notated τ ∼ GEM(α).2

The stick breaking distribution is a size-biased distribution—the probability tends

to concentrate around the initial components. The Tau parameter α determines how

many components of the probability vector will have high probability. Smaller values

of α result in a peakier distributions; larger values result in distributions that are

more spread out. Regardless of α, for large enough k, the value of τk still goes to

zero because the vector must sum to one. Figure 5.2 illustrates draws from the stick

breaking distribution for several values of α.

The stick-breaking distribution provides a constructive definition of the Dirichlet

process, which is a distribution over arbitrary distributions (Ferguson, 1973). Consider

a base distribution G0, which can be any type of distribution, and the following

random variables

τi ∼ GEM(α) i ∈ {1, 2, 3, . . .}

µi ∼ G0 i ∈ {1, 2, 3, . . .}.

Now define the random distribution

G =
∞∑
i=1

τiδµi(·)

which places mass τi on the point µi. This is a random distribution because its

components are random variables, and note that it is a discrete distribution even if G0

2GEM stands for Griffiths, Engen and McCloskey (Pitman, 2002).
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Figure 5.2: Draws for three settings of the parameter α of a stick-breaking distribution
(enough indices are shown to account for 0.95 of the probability). When the parameter
is substantially less than one (top row), very low indices are favored. When the
parameter is one (middle row), the weight tapers off more slowly. Finally, if the
magnitude of the parameter is larger (bottom row), weights are nearer a uniform
distribution.

is defined on a continuous space. Marginalizing out τi and µi, the distribution of G is

called a Dirichlet process (DP). It is parameterized by the base distribution G0 and

a scaling parameter ρ. The scaling parameter, as for the finite Dirichlet, determines

how close the resulting random distribution is to G0. Smaller ρ yields distributions

that are further from G0; larger ρ yields distributions that are closer to G0.3 The base

distribution is also called the mean of the DP because E[G |G0, ρ] = G0. The Dirichlet

process is a commonly used prior in Bayesian non-parametric statistics, where we seek

a prior over arbitrary distributions (Antoniak, 1974; Escobar and West, 1995; Neal,

3The formal connection between the DP and the finite dimensional Dirichlet is that the finite
dimensional distributions of the DP are finite Dirichlet, and the DP was originally defined via
the Kolmogorov consistency theorem(Ferguson, 1973). The infinite stick breaking distribution was
developed for a more constructive definition (Sethuraman, 1994). We will not be needing these
mathematical details here.
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2000).

In a hierarchical model, the DP can be used to define a topic model with an

unbounded number of topics. In such a model, unlike LDA, the data determine the

number of topics through the posterior and new documents can ignite previously

unseen topics. This extension is an application of a hierarchical Dirichlet process

(HDP), a model of grouped data where each group arises from a DP whose base

measure is itself a draw from a DP (Teh et al., 2006). In the HDP for topic modeling,

the finite dimensional Dirichlet distribution over per-document topic proportions is

replaced with a draw from a DP, and the base measure of that DP is drawn once

per-corpus from a stick-breaking distribution. The stick-breaking random variable

describes the overall prominence of topics in a collection; the draws from the Dirichlet

process describe how each document exhibits those topics.

Similarly, applying the HDP to the FTIC model of Section 5.2.1 results in a model

where the mean of the Dirichlet process represents the overall prominence of syntactic

states. This extension is described as the infinite tree with independent children

(ITIC) (Finkel et al., 2007). For each syntactic state, the transition distributions

drawn from the Dirichlet process allow each state to prefer certain children states in the

parse tree. Other work has applied this non-parametric framework to create language

models (Teh, 2006), full parsers for Chomsky normal form grammars (Liang et al.,

2007), models of lexical acquisition (Goldwater, 2007), synchronous grammars (Blun-

som et al., 2008), and adaptor grammars for morphological segmentation (Johnson

et al., 2006).

5.3 The Syntactic Topic Model

Topic models like LDA and syntactic models like FTIC find different decompositions

of language. Syntactic models ignore document boundaries but account for the order
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of words within each sentence–thus the components of syntactic models reflect how

words are used in sentences. Topic models respect document boundaries but ignore

the order of words within a document–thus the components of topic models reflect

how words are used in documents. We now develop the syntactic topic model (STM),

a hierarchical probabilistic model of language that finds components which reflect

both the syntax of the language and the topics of the documents.

For the STM, our observed data are documents, each of which is a collection of

dependency parse trees. (Note that in LDA, the documents are simply collections

of words.) The main idea is that words arise from topics, and that topic occurrence

depends on both a document-level variable and parse tree-level variable. We emphasize

that, unlike a parser, the STM does not model the tree structure itself and nor does

it use any syntactic labeling. Only the words as observed in the tree structure are

modeled.

The document-level and parse tree-level variables are both distributions over topics,

which we call topic weights. These distributions are never drawn from directly. Rather,

they are convolved—that is, they are multiplied and renormalized—and the topic

assignment for a word is drawn from the convolution. The parse-tree level topic

weight enforces syntactic consistency and the document-level topic weight enforces

thematic consistency. The resulting set of topics—the distributions over words that

the topic weights refer to—will be those that thus reflect both thematic and syntactic

constraints. Our model is a Bayesian non-parametric model, so the number of such

topics is determined by the data.

We describe this model in more mathematical detail. The STM contains topics (β),

transition distributions (π), per-document topic weights (θ), and top level weights (τ )

as hidden random variables.4 In the STM, topics are multinomial distributions over

a fixed vocabulary (βk). Each topic maintains a transition vector which governs the

4Note that τ in this chapter is a draw from a stick breaking distribution. In previous chapters it
was the prior distribution over path probabilities in WordNet.
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topics assigned to children of parents assigned a given topic (πk). Document weights

model how much a document is about specific topics. Finally, each word has a topic

assignment (zd,n) that decides from which topic the word is drawn. The STM posits

a joint distribution using these building blocks and, from the posterior conditioned on

the observed documents, we find transitions, per-document topic distributions, and

topics.

As mentioned, we use Bayesian non-parametric methods to avoid having to set

the number of topics. We assume that there is a vector τ of infinite length which tells

us which topics are actually in use (as discussed in Section 5.2.2). These top-level

weights are a random probability distribution drawn from a stick-breaking distribution.

Putting this all together, the generative process for the data is as follows:

1. Choose global weights τ ∼ GEM(α)

2. For each topic index k = {1, . . . }:

(a) Choose topic βk ∼ Dir(σρu)

(b) Choose transition distribution πk ∼ DP(αTτ )

3. For each document d = {1, . . .M}:

(a) Choose document weights θd ∼ DP(αDτ )

(b) For each sentence root node with index (d, r) ∈ SENTENCE-ROOTSd:

i. Choose topic assignment zd,r ∝ θdπstart

ii. Choose root word wd,r ∼ mult(1, βzr)

(c) For each additional child with index (d, c) and parent with index (d, p):

i. Choose topic assignment

zd,c ∝ θdπzd,p (5.1)

ii. Choose word wd,c ∼ mult(1,βzd,n)
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This process is illustrated as a probabilistic graphical model in Figure 5.3.

As with the models described in previous chapters, data analysis with this model

amounts to “reversing” this process to determine the posterior distribution of the

latent variables. The posterior distribution is conditioned on observed words organized

into parse trees and documents. It provides a distribution over all of the hidden

structure—the topics, the syntactic transition probabilities, the per-document topic

weights, and the corpus-wide topic weights.

Because both documents and local syntax shape the choice of possible topics for

a word, the posterior distribution over topics favors topics that are consistent with

both contexts. For example, placing all nouns in a single topic would respect the

syntactic constraints but not the thematic, document-level properties, as not all nouns

are equally likely to appear in a given document. Instead, the posterior prefers topics

which would divide syntactically similar words into different categories based on how

frequently they co-occur in documents.

In addition to determining what the topics are, i.e., which words appear in a topic

with high probability, the posterior also defines a distribution over how those topics are

used. It encourages topics to appear in similar documents based on the per-document

topic distributions θ and encourages topics to appear in similar similar local syntactic

contexts based on the transition distribution π. For each word, two different views of

its generation are at play. On one hand, a word is part of a document and reflects that

document’s themes. On the other hand, a word is part of a local syntactic structure

and reflects the likely type of word that is associated with a child of its parent. The

posterior balances both these views to determine which topic is associated with each

word.

Finally, through the stick-breaking and DP machinery, the posterior selects the

number of topics that are used. This strikes a balance between explaining the data

well (e.g. reflecting syntax and document-level properties) and not using too many
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Figure 5.3: In this graphical model depiction of the syntactic topic model, the
dependency parse representation of FTIC in Figure 5.1(b) are grouped into documents,
as in LDA in 5.1(a). For each of the words in the sentence, the topics weights of a
document θ and the parent’s topic transition π together choose the topic. (For clarity,
some of the sentence node dependencies have been grayed out.) An example of the
structure of a sentence is on the right, as demonstrated by an automatic parse of the
sentence “Some phrases laid in his mind for years.” The STM assumes that the tree
structure and words are given, but the latent topics z are not.

topics, as governed by the hyperparameter α (see Section 5.2.2).

As we will see below, combining document-level properties and syntax (Equa-

tion 5.1) complicates posterior inference (compared to HDP or ITIC) but allows us to

simultaneously capture both syntactic and semantic patterns. Under certain limiting

assumptions, the STM reduces to the models discussed in Section 5.2 . The STM

reduces to the HDP if we fix π to be a vector of ones, thus removing the influence of

the tree structure. The STM reduces to the ITIC if we fix θ to be a vector of ones,

removing the influence of the documents.

5.3.1 Relationships to Other Work

The STM attempts to discover patterns of syntax and semantics simultaneously. In

this section, we review previous methods to model syntax and semantics simultaneously

and the statistical tools that we use to combine syntax and semantics. We also discuss
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other methodologies from word sense disambiguation, word clustering, and parsers

that are similar to the STM.

While the STM combines topics and syntax using a single distribution (Equa-

tion 5.1), an alternative is, for each word, to choose one of the two distributions. In

such a model, the topic assignment comes from either the parent’s topic transition

πz(d,p) or document weights θd, based on a binary selector variable (instead of being

drawn from a product of the two distributions). Griffiths et al. (2005)’s topics and

syntax model (2005) did this on the linear order of words in a sentence. A mixture of

topics and syntax in a similar manner over parse trees would create different types

of topics, individually modeling either topics or syntax. It would not, however, en-

force consistency with parent nodes and a document’s themes. A word need only be

consistent with either view.

Rather, the STM draws on the idea behind the product of experts (Hinton, 1999),

multiplying two vectors and renormalizing to obtain a new distribution. Taking the

point-wise product can be thought of as viewing one distribution through the “lens” of

another, effectively choosing only words whose appearance can be explained by both.

Instead of applying the lens to the selection of the latent classes, the topics, once

selected, could be altered based on syntactic features of the text. This is the approach

taken by TagLDA (Zhu et al., 2006), where each word is associated with a single

tag (such as a part of speech), and the model learns a weighting over the vocabulary

terms for each tag. This weighting is combined with the per-topic weighting to emit

the words. Unlike the STM, this model does not learn relationships between different

syntactic classes and, because the tags are fixed, cannot adjust its understanding of

syntax to better reflect the data.

There has also been other work that does not seek to model syntax explicitly but

nevertheless seeks to use local context to influence topic selection. One example is the

hidden topic Markov model (Gruber et al., 2007), which finds chains of homogeneous
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topics within a document. Like the STM and Griffiths et al, the HTMM sacrifices the

exchangibility of a topic model to incorporate local structure. Similarly, Wallach’s

bigram topic model (Wallach, 2006) assumes a generative model that chooses topics

in a fashion identical to LDA but instead chooses words from a distribution based on

per-topic bigram probabilities, thus partitioning bigram probabilities across topics.

A similar vein of research is discourse-based WSD methods. The Yarowsky

algorithm, for instance, uses clusters of similar contexts to disambiguate the sense of

a word in a given context (Yarowsky, 1995; Abney, 2004). While the result does not

explicitly model syntax, it does have a notion of both document theme (as all senses

in a document must have the same sense) and the local context of words (the feature

vectors used for clustering mentions). However, the algorithm is only defined on a

word-by-word basis and does not build a consistent picture of the corpus for all the

words in a document.

Local context is better captured by explicitly syntactic models. Work such as

Lin similarity (Lin, 1998) and semantic space models (Padó and Lapata, 2007) build

sets of related terms that appear in similar syntactic contexts. However, they cannot

distinguish between uses that always appear in different kinds of documents. For

instance, the string “fly” is associated with both terms from baseball and entomology.

These syntactic models use the output of parsers as input. Some parsing for-

malisms, such as adaptor grammars (Johnson et al., 2006; Johnson, 2009), are broad

and expressive enough to also describe topic models. However, there has been no

systematic attempt to combine syntax and semantic in such a unified framework. The

development of statistical parsers has increasingly turned to methods to refine the

latent classes that generate the words and transitions present in a parser. Whether

through subcategorization (Klein and Manning, 2003) or lexicalization (Collins, 2003;

Charniak, 2000), broad categories are constrained to better model idiosyncrasies of

the text. After this work appeared, other latent variable models of grammar have suc-
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cessfully used product of expert models to improve the performance of parsers (Petrov,

2010). While the STM is not a full parser, it offers an alternate way of constraining

the latent classes of terms to be consistent across similar documents.

5.3.2 Posterior inference with variational methods

We have described the modeling assumptions behind the STM. As detailed, the STM

assumes a decomposition of the parsed corpus by a hidden semantic and syntactic

structure encoded with latent variables. Given a data set, the central computational

challenge for the STM is to compute the posterior distribution of that hidden struc-

ture given the observed documents, and data analysis proceeds by examining this

distribution. Computing the posterior is “learning from data” from the perspective of

Bayesian statistics.

Markov Chain Monte Carlo (MCMC), which we used for approximate inference

in previous chapters, is a powerful methodology, but it has drawbacks. Convergence

of the sampler to its stationary distribution is difficult to diagnose, and sampling

algorithms can be slow to converge in high dimensional models (Robert and Casella,

2004). An alternative to MCMC is variational inference. Variational methods, which

are based on related techniques from statistical physics, use optimization to find a

distribution over the latent variables that is close to the posterior of interest (Jordan

et al., 1999; Wainwright and Jordan, 2008). Variational methods provide effective

approximations in topic models and non-parametric Bayesian models (Blei et al., 2003;

Blei and Jordan, 2005; Teh et al., 2006; Liang et al., 2007; Kurihara et al., 2007).

Variational methods enjoy a clear convergence criterion and tend to be faster

than MCMC in high-dimensional problems.5 Variational methods provide particular

advantages over sampling when latent variable pairs are not conjugate. Gibbs sampling

requires conjugacy, and other forms of sampling that can handle non-conjugacy, such

5Understanding the general trade-offs between variational methods and Gibbs sampling is an
open research question.
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as Metropolis-Hastings, are much slower than variational methods. Non-conjugate

pairs appear in the dynamic topic model (Blei and Lafferty, 2006; Wang et al., 2008),

correlated topic model (Blei et al., 2007), and in the STM considered here. Specifically,

in the STM the topic assignment is drawn from a renormalized product of two Dirichlet-

distributed vectors (Equation 5.1). The distribution for each word’s topic does not

form a conjugate pair with the document or transition topic distributions. In this

section, we develop an approximate posterior inference algorithm for the STM that is

based on variational methods.

Our goal is to compute the posterior of topics β, topic transitions π, per-document

weights θ, per-word topic assignments z, top-level weights τ given a collection of

documents and the model described in Section 5.3. The difficulty around this posterior

is that the hidden variables are connected through a complex dependency pattern.

With a variational method, we begin by positing a family of distributions of the same

variables with a simpler dependency pattern. This distribution is called the variational

distribution. Here we use the fully-factorized variational distribution,

q(τ , z,θ,π,β|τ ∗,φ,γ,ν) = q(τ |τ ∗)
∏
k

q(πk|νk)
∏
d

[
q(θd|γd)

∏
n

q(zd,n|φd,n)

]
.

Note that the latent variables are independent and each is governed by its own

parameter. The idea behind variational methods is to adjust these parameters to find

the member of this family that is close to the true distribution.

Following Liang (2007), q(τ |τ ∗) is not a full distribution but is a degenerate

point estimate truncated so that all weights with index greater than K are zero in

the variational distribution. The variational parameters γd and νz index Dirichlet

distributions, and φn is a topic multinomial for the nth word.

With this variational family in hand, we optimize the evidence lower bound (ELBO),
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Figure 5.4: The truncated variational distribution removes constraints that are imposed
because of the interactions of the full model and also truncates the possible number
of topics (c.f. the full model in Figure 5.3). This family of distributions is used to
approximate the log likelihood of the data and uncover the model’s true parameters.

a lower bound on the marginal probability of the observed data,

L(γ, ν, φ; τ, θ, π, β) =

Eq [log p(τ |α)] + Eq [log p(θ|αD, τ )] + Eq [log p(π|αP , τ )] + Eq [log p(z|θ,π)]

+Eq [log p(w|z,β)] + Eq [log p(β|σ)]− Eq [log q(θ) + log q(π) + log q(z)] .(5.2)

Variational inference amounts to fitting the variational parameters to tighten this lower

bound. This is equivalent to minimizing the KL divergence between the variational

distribution and the posterior. Once fit, the variational distribution is used as an

approximation to the posterior.

Optimization of Equation 5.2 proceeds by coordinate ascent, optimizing each

variational parameter while holding the others fixed. Each pass through the variational

parameters increases the ELBO, and we iterate this process until reaching a local

optimum. When possible, we find the per-parameter maximum value in closed form.

When such updates are not possible, we employ gradient-based optimization (Galassi

et al., 2003).

One can divide the ELBO into document terms and global terms. The document

terms reflect the variational parameters of a single document and the global terms

reflect variational parameters which are shared across all documents. This can be seen
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in the plate notion in Figure 5.4; the variational parameters on the right hand side

are specific to individual documents. We expand Equation 5.2 and divide it into a

document component (Equation 7.9) and a global component (Equation 7.11), which

contains a sum of all the document contributions, in the appendix.

In coordinate ascent, the global parameters are fixed as we optimize the document

level parameters. Thus, we can optimize a single document’s contribution to the

ELBO ignoring all other documents. This allows us to parallelize our implementation

at the document level; each parallel document-level optimization is followed by an

optimization step for the global variational parameters. We iterate these steps until

we find a local optimum. In practice, several random starting points are used and we

select the variational parameters that reach the best local optimum.

In the next sections, we outline the variational updates for the word-specific

terms, document-specific terms, and corpus-wide terms. This exposition preserves the

parallelization in our implementation and highlights the separate influences of topic

modeling and syntactic models.

Document-specific Terms

We begin with φd,n, the variational parameter that corresponds to the nth observed

word’s assignment to a topic. We can explicitly solve for the value of φn which

maximizes document d’s contribution to the ELBO:

φn,i ∝ exp

{
Ψ (γi)−Ψ

(∑K
j=1 γj

)
+

K∑
j=1

φp(n),j

(
Ψ (νj,i)−Ψ

(∑K
k=1 νj,k

))
−
∑
c∈c(n)

ω−1
c

K∑
j

γjνi,j∑
k γk

∑
k νi,k

+
∑
c∈c(n)

K∑
j=1

φc,j

(
Ψ (νi,j)−Ψ

(∑K
k=1 νi,k

))
+ log βi,wd,n

 . (5.3)

(Note that we have suppressed the document index d on φ and γ.)
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This update reveals the influences on our estimate of the posterior of a single

word’s topic assignment. In the first line, the first two terms with the Dirichlet

parameter γ show the influence of the document’s distribution over topics; the term

with multinomial parameter φp(n) and Dirichlet parameter ν reflects the interaction

between the topic of the parent and transition probabilities. In the second line, the

interaction between the document and transitions forces the document and syntax to

be consistent (this is mediated by an additional variational parameter ωc discussed in

Appendix 7.2.2). In the final line, the influence of the children’s’ topic on the current

word’s topic is expressed in the first term, and the probability of a word given a topic

in the second.

The other document-specific term is the per-document variational Dirichlet over

topic proportions γd. Intuitively, topic proportions should reflect the expected number

of words assigned to each topic in a document (the first two terms of equation 5.4),

with the constraint that γ must be consistent with the syntactic transitions in the

document, which is reflected by the ν term (the final term of Equation 5.4). This

interaction prevents us from performing the update directly, so we use the gradient

(derived in Appendix 5.3.2)

∂L
∂γi

= Ψ′ (γi)

(
αD,iτ

∗ +
N∑
n=1

φn,i − γi

)
−Ψ′

(∑N
j=1 γj

) K∑
j=1

[
αD,jτ

∗ +
N∑
n=1

φn,j − γj

]

−
N∑
n=1

ω−1
n

K∑
j=1

φp(n),j

νj,i
∑N

k 6=j γk −
∑N

k 6=j νj,kγk(∑N
k=1 γk

)2∑N
k=1 νj,k

 (5.4)

to optimize a document’s ELBO contribution using numerical methods.

Now we turn to updates which require input from all documents and cannot be

parallelized. Each document optimization, however, produces expected counts which

are summed together; this is similar to the how the the E-step of EM algorithms can

be parallelized and summed as input to the M-step (Wolfe et al., 2008).

86



Global Variational Terms

In this section, we consider optimizing the variational parameters for the transitions

between topics and the top-level topic weights. Note that these variational parameters,

in contrast with the previous section, are more concerned with the overall syntax,

which is shared across all documents. Instead of optimizing a single ELBO term for

each document, we now seek to maximize the entirety of Equation 7.7, expanded in

Equation 7.11 in the appendix.

The non-parametric models in Section 5.2.2 use a random variable τ drawn from a

stick-breaking distribution to control how many components the model uses. The prior

for τ attempts use as few topics as possible; the ELBO balances this desire against

using more topics to better explain the data. We use numerical methods to optimize

τ with respect to the gradient of the global ELBO, which is given in Equation 7.12 in

the appendix.

Finally, we optimize the variational distribution νi. If there were no interaction

between θ and π, the update for νi,j would be proportional to the expected number

of transitions from parents of topic i to children of topic j (this will set the first two

terms of Equation 5.5 to zero). However, the objective function also encourages ν

to be consistent with γ (the final term of Equation 5.5); thus, if γ excludes topics

from being observed in a document, the optimization will not allow transitions to

those topics. Again, this optimization is done using numerical optimization using the
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gradient of the ELBO,

∂L

∂νi,j
= Ψ′ (νi,j)

αP,j +
N∑
n=1

∑
c∈c(n)

φn,iφc,j − νi,j


−Ψ′

(∑K
k=1 νi,k

) K∑
k=1

αP,k +
N∑
n=1

∑
c∈c(n)

φn,iφc,k − νi,k


−

N∑
n

φn,i
∑
c∈c(n)

ω−1
c

γj
∑N

k 6=j νi,k −
∑N

k 6=j νi,kγk(∑N
k=1 νj,k

)2∑N
k=1 γk

. (5.5)

5.4 Experiments

We demonstrate how the STM works on data sets of increasing complexity. First,

we show that the STM captures properties of a simple synthetic dataset that elude

both topic and syntactic models individually. Next, we use a larger real-word dataset

of hand-parsed sentences to show that both thematic and syntactic information is

captured by the STM.

5.4.1 Topics Learned from Synthetic Data

We demonstrate the STM on synthetic data that resemble natural language. The data

were generated using the grammar specified in Table 5.1 (for a review of the context

free formalism, see Section 1.2.1). Each of the parts of speech except for prepositions

and determiners was divided into themes, and a document contains a single theme

for each part of speech. For example, a document can only contain nouns from a

single “economic,” “academic,” or “livestock” theme, verbs from a possibly different

theme, etc. Documents had between twenty and fifty sentences. An example of two

documents is shown in Figure 5.5.

Using a truncation level of 16, we fit three different non-parametric Bayesian
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Fixed Syntax
S → VP

VP → NP V (PP) (NP)
NP → (Det) (Adj) N (PP)
PP → P NP

P → (“about”, “on”, “over”, “with”)
Det → (“a”, “that”, “the”, “this”)

Document-specific Vocabulary
V → (“falls”, “runs”, “sits”) or

(“bucks”, “climbs”, “falls”, “surges”) . . .
N → (“COW”, “PONY”, “SHEEP”) or

(“MUTUAL FUND”, “SHARE”, “STOCK”) . . .
Adj → (“American”, “German”, “Russian”) or

(“blue”, “purple”, “red”, “white”) . . .

Table 5.1: The procedure for generating synthetic data. Syntax is shared across all
documents, but each document chooses one of the thematic terminal distribution for
verbs, nouns, and adjectives. This simulates how all documents share syntax and
subsets of documents share topical themes. All expansion rules are chosen uniformly
at random.

language models to the synthetic data (Figure 5.6).6 Because the infinite tree model

is aware of the tree structure but not documents, it is able to separate all parts of

speech successfully except for adjectives and determiners (Figure 5.6c). However, it

ignores the thematic distinctions that actually divided the terms between documents.

The HDP is aware of document groupings and treats the words exchangeably within

them and is thus able to recover the thematic topics, but it misses the connections

between the parts of speech, and has conflated multiple parts of speech (Figure 5.6b).

The STM is able to capture the the topical themes and recover parts of speech

(with the exception of prepositions placed in the same topic as nouns with a self loop).

Moreover, it was able to identify the same interconnections between latent classes that

were apparent from the infinite tree. Nouns are dominated by verbs and prepositions,

6In Figure 5.6 and Figure 5.7, we mark topics which represent a single part of speech and
are essentially the lone representative of that part of speech in the model. This is a subjective
determination of the authors, does not reflect any specialization or special treatment of topics by the
model, and is done merely for didactic purposes.
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surges

PHD_CANDIDATE
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GRAD_STUDENT
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GRAD_STUDENT

purple about

PROFESSOR
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PROFESSOR
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PROFESSOR

red
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the red

walks

about

SHEEP

evil

falls

over

SHEEP

on

SHEEP
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PONY

on

SHEEP

evil evil

Figure 5.5: Two synthetic documents with multiple sentences. Nouns are shown in
upper case. Each document chooses a theme for each part of speech independently;
for example, the document on the left uses motion verbs, academic nouns, and color
adjectives. Various models are applied to these data in Figure 5.6.

and verbs are the root (head) of sentences. Figure 5.6d shows the two divisions as

separate axes; going form left to right, the thematic divisions that the HDP was able

to uncover are clear. Going from top to bottom, the syntactic distinctions made by

the infinite tree are revealed.

5.4.2 Qualitative Description of Topics learned by the STM

from Hand-annotated Data

The same general properties, but with greater variation, are exhibited in real data.

We converted the Penn Treebank (Marcus et al., 1994), a corpus of manually curated

parse trees, into a dependency parse (Johansson and Nugues, 2007). The vocabulary

was pruned to terms that appeared in at least ten documents.

Figure 5.7 shows a subset of topics learned by the STM with truncation level 32.

Many of the resulting topics illustrate both syntactic and thematic consistency. A

few non-specific function topics emerged (pronoun, possessive pronoun, general verbs,

etc.). Many of the noun categories were more specialized. For instance, Figure 5.7

shows clusters of nouns relating to media, individuals associated with companies
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(“mr,” “president,” “chairman”), and abstract nouns related to stock prices (“shares,”

“quarter,” “earnings,” “interest”), all of which feed into a topic that modifies nouns

(“his,” “their,” “other,” “last”).

Griffiths et al (Griffiths et al., 2005) observed that nouns, more than other parts

of speech, tend to specialize into distinct topics, and this is also evident here. In

Figure 5.7, the unspecialized syntactic categories (shaded and with rounded edges) serve

to connect many different specialized thematic categories, which are predominantly

nouns (although the adjectives also showed bifurcation). For example, verbs are

mostly found in a single topic, but then have a large number of outgoing transitions

to many noun topics. Because of this relationship, verbs look like a syntactic “source”

in Figure 5.7. Many of these noun topics then point to thematically unified topics

such as “personal pronouns,” which look like syntactic “sinks.”

It is important to note that Figure 5.7 only presents half of the process of choosing a

topic for a word. While the transition distribution of verb topics allows many different

noun topics as possible dependents, because the topic is chosen from a product of θ

and π, θ can filter out the noun topics that are inconsistent with a document’s theme.

This division between functional and topical uses for the latent classes can also

been seen in the values for the per-document multinomial over topics. A number of

topics in Figure 5.7(b), such as 17, 15, 10, and 3, appear to some degree in nearly every

document, while other topics are used more sparingly to denote specialized content.

With α = 0.1, this plot also shows that the non-parametric Bayesian framework is

ignoring many later topics.

5.4.3 Quantitative Results on Synthetic and Hand-annotated

Data

To study the performance of the STM on new data, we estimated the held out

probability of previously unseen documents with an STM trained on a portion of
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the dataset. For each position in the parse trees, we estimate the probability of the

observed word. We compute the perplexity as the exponent of the inverse of the

per-word average log probability. The lower the perplexity, the better the model has

captured the patterns in the data. We also computed perplexity for individual parts

of speech to study the differences in predictive power between content words, such

as nouns and verbs, and function words, such as prepositions and determiners. This

illustrates how different algorithms better capture aspects of context. We expect

function words to be dominated by local context and content words to be determined

more by the themes of the document.

This trend is seen not only in the synthetic data (Figure 5.8(a)), where syntactic

models better predict functional categories like prepositions, and document-only

models fail to account for patterns of verbs and determiners, but also in real data.

Figure 5.8(b) shows that HDP and STM both perform better than syntactic models

in capturing the patterns behind nouns, while both STM and the infinite tree have

lower perplexity for verbs. Like syntactic models, our model was better able to predict

the appearance of prepositions but also remained competitive with HDP on content

words. On the whole, STM had lower perplexity than HDP and the infinite tree.

5.5 Conclusion

In this chapter, we explored the common threads that link syntactic and topic models

and created a model that is simultaneously aware of both thematic and syntactic

influences in a document. These models are aware of more structure than either model

individually.

More generally, the STM serves as an example of how a mixture model can support

two different, simultaneous explanations for how the latent class is chosen. Although

this model used discrete observations, the variational inference setup is flexible enough
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to support other distributions over the output.

While the STM’s primary goal was to demonstrate how these two views of context

could be simultaneously learned, there are a number of extensions that could lead

to more accurate parsers. First, this model could be further extended by integrating

a richer syntactic model that does not just model the words that appear in a given

structure but one that also models the parse structure itself. This would allow the

model to use large, diverse corpora without relying upon an external parser to provide

the tree structure.

Removing the independence restriction between children also would allow for this

model to closer approximate the state of the art syntactic models and to be better

distinguish the children of parent nodes (this is especially the problem for head verbs,

which often have many children). Finally, this model could also make use of labeled

dependency relations and lexicalization.

With the ability to adjust to specific document or corpus-based contexts, a parser

built using this framework could adapt to handle different domains while still sharing

information between them. The classification and clustering implicitly provided by

the topic components would allow the parser to specialize its parsing model when

necessary, allowing both sentence-level and document-level information to shape the

model’s understanding of a document.
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Figure 5.6: We contrast the different views of data that are available by using syntactic
and semantic topics based on our synthetic data. Three models were fit to the synthetic
data described in Section 5.4. Each box illustrates the top five words of a topic; boxes
that represent homogeneous parts of speech have rounded edges and are shaded; and
nouns are in upper case. Edges between topics are labeled with estimates of their
transition weight π. If we have neither syntactic nor semantic topics, we have a
unigram (a) model that views words as coming from a single distribution over words.
Adding syntactic topics allows us to recover the parts of speech (c), but this lumps
all topics together. Although the HDP (b) can discover themes of recurring words, it
cannot determine the interactions between topics or separate out ubiquitous words
that occur in all documents. The STM (d) is able to recover both the syntax and the
themes.
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Figure 5.7: Topics discovered from fitting the syntactic topic model on the Treebank
corpus. As in Figure 5.6, parts of speech that aren’t subdivided across themes are
indicated and edges between topics are labeled with estimates of the the transition
probability π. Head words (verbs) are shared across many documents and allow many
different types of nouns as possible dependents. These dependents, in turn, share
topics that look like pronouns as common dependents. The specialization of topics is
also visible in plots of the estimates for the per-document topic distribution θ for the
first 300 documents of the Treebank (right), where three topics columns have been
identified. Many topics are used to some extent in every document, showing that they
are performing a functional role, while others are used more sparingly for semantic
content.
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Figure 5.8: After fitting three models on synthetic data, the syntactic topic model has
better (lower) perplexity on all word classes except for adjectives. HDP is better able to
capture document-level patterns of adjectives. The infinite tree captures prepositions
best, which have no cross-document variation. On real data 5.8(b), the syntactic topic
model was able to combine the strengths of the infinite tree on functional categories
like prepositions with the strengths of the HDP on content categories like nouns to
attain lower overall perplexity.
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Chapter 6

Conclusion and Future Work

Latent Dirichlet allocation (LDA) is a ubiquitous technique for the unsupervised

discovery of structure in data. However, despite its popularity, its assumptions about

the nature of the data are linguistically uninformed, even though it is usually applied

to text.

It assumes that documents are a bag of words, assumes that related words are

no more likely to appear together than unrelated words, and cannot understand

multilingual corpora. In the preceding chapters, we showed extensions that extend

LDA to overcome these limitations using tools and resources from the linguistics

community.

6.1 Building on Linguistic Data

One of the recurring themes in this thesis is the use of linguistic resources. These

resources are used as a starting point and as a tool to guide our statistical approaches

to find explanatory patterns that are consistent with both the foundational linguistic

resources and the data we observe in the real world.

In Chapter 2, we proposed latent Dirichlet allocation with WordNet, LDAWN,

a model that uses an ontology to encourage words with similar meanings to have
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correlated probabilities within an individual topic. This creates topics that are

consistent with the initial ontology, but it only creates topics that are also consistent

with the documents that we observe in a corpus. In Chapter 3, we extended LDAWN

to handle multiple languages.

In Chapter 4, we took the idea of combining information from curated linguistic

resources a step further. The multilingual topic model for unaligned text (MuTo)

uses resources like dictionaries to form an initial bridge between languages and then

iteratively improves the connections between languages to build topics that make

sense across languages.

Finally, in Chapter 5, we developed a technique that combined two views of text

data: the view provided by syntactic models and the view provided by probabilistic

topic models. Again, we use curated linguistic data as a starting point; our data are a

collection of dependency trees split into documents. Using these data, we discover

patterns of words that are consistent with both local syntactic context and global

semantic patterns based on document co-occurrence.

As we discussed in Chapter 1, the field of linguistics is deep and productive. A

number of these theories have been embodied in machine readable datasets or annotated

corpora. While these resources are not without their flaws (e.g. Section 2.4), the

intuitions and insight in such resources can guide statistical models to discover patterns

that are consistent with data and human understanding.

6.2 Deeper Linguistic Models and New Applica-

tions

We were able to combine the insights provided by linguistic resources with the statistical

formalism of topic models by first specifying a statistical model consistent with the

linguistic information. For LDAWN, it was a probabilistic walk through a tree; for
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MuTo , it was a matching over terms across languages; for the STM, it was the Infinite

Tree with Independent Children (Finkel et al., 2007). In each case, we combined this

statistical model of the linguistic information with the basic skeleton of LDA.

The ability to combine models so seamlessly is one of the strengths of statistical

models. Statistical models speak the same language — probability — so combining

them requires only specifying a composite model and then deriving inference for the

new model.

While these models are the product of combination, they could themselves serve

as components in a larger model. For example: the syntax modeling of the STM in

Chapter 5 could be combined with the ontologies of LDAWN 2 to create context-

specific disambiguations; the matching of MuTo could be combined with LDAWN

to create an ad hoc alignment over paths in unaligned WordNets; or the syntax

modeling of the STM could be combined with MuTo to learn translations that also

depend on local context but still not requiring an explicit parallelism at the local

syntax level.

While the models discussed in this thesis highlight that it is possible to extend

LDA in ways that draw upon linguistic insights, there are many other possible

applications for the models presented here that go deeper in building linguistically

sound applications and also applications that use the insights presented here to explore

applications beyond text.

6.2.1 Capturing Other Knowledge Sources

In Chapter 2, we demonstrated a method that allowed knowledge about word meanings

encoded in an ontology to be incorporated into a probabilistic model in such a way

that if concepts had similar meanings in an ontology, the words that express those

concepts would have correlated probabilities. Other knowledge resources are organized

in hierarchies similar to WordNet: elements are organized in a tree, elements can
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appear in ambiguous ways, and identifying the path in the hierarchy for a mention of

an element disambiguates the mention:

locations Gazetteers organize locations in hierarchies such as borough, city, county, state,

and nation. These locations are mentioned in documents, but which location

corresponds to which reference is uncertain.

genes Genes have been organized into hierarchies where subtrees share common local-

ization (Ashburner, 2000). Treating pathways as documents could help determine

where in a cell a particular interaction happens.

named entities Wikipedia categorizes named entities into (roughly) hierarchical categories. For

example, Albert Einstein is categorized as a “Jewish Scientist,” an “American

Jewish Scientist,” and as a “Jewish Scientist.” However, the string “Einstein”

could refer to the person, a medical school, or a bagel company. Organizing

mentions into this hierarchy could discover correlations between categories that

appear in documents.

6.2.2 Integrating Models into Applications

The models developed here focused on the representation and modeling challenges

more than actual applications. However, because of the flexibility of probabilistic

models, it is relatively simple to use the models in this thesis for the same applications

that have been developed for other topic models.

For instance, supervised topic models (Blei and McAuliffe, 2007) and relational

topic models (Chang and Blei, 2009) use the per-document topic distribution to make

predictions a document’s sentiment or connection to other documents. The models

presented in Chapter 4 would allow these predictions to be made on multilingual

corpora. For instance, instead of just making predictions based on reviews on Ama-

zon.com’s English website, predictions could be also share information gleaned from
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reviews on Amazon.com’s Japanese and German language sites.

6.2.3 Learning Deeper Structures and Testing Cognitive Plau-

sibility

The most exciting extensions of these models come from the ability to use the insights

from linguistic information while not relying exclusively on the limited amount of data

available from a single set of trained expert annotations from linguists. In Chapter 5,

we relied on a corpus meticulously turned into machine readable parses by human

annotators. Discovering this structure using unlabeled or partially labeled data would

help increase the applicability of the methods discussed here.

Understanding how humans produce and understand language is the central

question in linguistics. Allowing computers to reach the same level of understanding

requires the synthesis of many of the insights and resources created by the linguistics

community. Expressing these insights and resources in the language of probabilistic

models makes them understandable to computers, makes them easier to test and

combine with other methodologies, and makes them able to react and grow as more

data are presented.

This thesis takes linguistic notions of semantics and syntax and casts them in a

probabilistic framework to understand data through the framework of topic models.

This is a step in building models that can process large amounts of data, a strength

of probabilistic models, but can also retain the lessons learned from the knowledge

and experience of linguists.

All models make assumptions, but doing so in a linguistically-grounded way means

that as we explore and use these models more and more, how our models perform gives
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us greater insight into not just the mechanics of how we engineered our particular

models but also into the rich cognitive and and philosophical assumptions they inherit.
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Chapter 7

Appendix: Variational Inference

for Syntactic Topic Models

This appendix explains the derivation of the updates for variational inference for the

Syntactic Topic Model (STM). After some mathematical preliminaries, we expand

the expectations in the variational likelihood bound and then, having expanded the

objective function, derive the updates which optimize the bound.

7.1 Dirichlet in the Exponential Family

A probability distribution is a member of the exponential family of distributions if it

can be expressed using the exponential family form

p(x|η) = h(x)exp
{
g(η)Tu(x)− a(η)

}
, (7.1)

where g(η) is the natural parameter vector, u(x) is the natural statistic vector, h(x) is

the measure of the space, and a(η) is the normalization. We can express the Dirichlet

distribution (first discussed in Section 1.1) as an exponential family distribution,
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rewriting the conventional density function,

Dir(θΓ (α)1 , . . . , αK) =
Γ (
∑

k αk)∏
k Γ (αk)︸ ︷︷ ︸

normalization

∏
k

θαk−1
k ,

as an exponential family distribution

Dir(θ|α) =exp




α1 − 1

...

αK − 1


T 

log θ1

...

log θK

+ log Γ
(∑K

i=1 αi

)
−

K∑
i=1

Γ (αi)

 . (7.2)

One property of the exponential family of distributions that we state without proof (Winn,

2003) is that the expectation of the natural statistic vector is the derivative of the log

normalizer, with respect to the natural parameter. For a Dirichlet distribution,

Eθ [log θi] = Ψ (αi)−Ψ
(∑K

j=1 αj

)
. (7.3)

Thus, if we take the expectation of a Dirichlet distribution p(θ|α) with respect to

a variational Dirichlet distribution parameterized by γ, we have

Eq [log p(θ|α)] =Eq

log

Γ
(∑K

i=1 αi

)
∑K

i=1 Γ (αi)

K∏
i=1

θαi−1


=Eq

[
log Γ

(∑K
i=1 αi

)
−

K∑
i=1

log Γ (αi) +
K∑
i=1

(αi − 1) log θi

]
.

(7.4)

Only θ is governed by q, and log θi is the natural statistic of the Dirichlet distribution

when it as written as an exponential family distribution. In the variational distribution,
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θ comes from a Dirichlet parameterized by γ, so using Equation 7.3, we have

Eq [log p(θ|α)] = log Γ
(∑K

i=1 αi

)
−

K∑
i=1

log Γ (αi) +
K∑
i=1

(αi − 1)
(

Ψ (γi)−Ψ
(∑K

j=1 γj

))
.

(7.5)

7.2 Expanding the Likelihood Bound for Document-

Specific Terms

Recall that the objective function for the STM is

L(γ, ν, φ; τ, θ, π, β) =

Eq [log p(τ |α)] + Eq [log p(θ|αD, τ )] + Eq [log p(π|αP , τ )] + Eq [log p(z|θ,π)]

+Eq [log p(w|z,β)] + Eq [log p(β|σ)]− Eq [log q(θ) + log q(π) + log q(z)] .(7.6)

In this section, we expand the terms in the L needed to perform document-specific

expectations. This will provide the information needed to optimize document-specific

variational parameters in the next section. We save the expansion of the remaining

terms from L until Section 7.4.

7.2.1 LDA-like terms

The terms of equation 7.7 specific to a single document are

Ld =Eq [log p(θd|αD, τ )] + Eq [log p(zd|θd,π)]

+ Eq [log p(w|zd,β)]− Eq [log q(θd) + log q(zd)] . (7.7)

We now expand each of these using the formula given in Equation 7.5. First, if we
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consider the expectation over the distribution over latent topics,

Eq [log p(θd|αD, τ )] = log Γ
(∑K

j=1 αD,jτ
∗
)
−

K∑
i=1

log Γ (αD,iτ
∗)+

K∑
i=1

(αD,iτ
∗ − 1)

(
Ψ (γi)−Ψ

(∑K
j=1 γj

))
,

we can treat the truncated Dirichlet process as a Dirichlet distribution with a parameter

that has been scaled by αD. We postpone expanding the expectation over topic

assignments zd until the next section. For the expectation over the words, we

note that the probability of the nth word in document d taking topic k under the

variational distribution is φd,n,k or (suppressing the document index) φn,k and given

that assignment, the probability of the corresponding token wd,n being produced by

topic k is βk,wd,n . Thus,

Eq [log p(w|z,β)] =
N∑
n=1

K∑
i=1

φn,i log βi,wd,n .

We are left with the entropy terms. First, the entropy for the per-document topic

distribution is

−Eq [log q(θ)] =− log Γ
(∑K

j=1 γj

)
+

K∑
i=1

log Γ (γi)−

K∑
i=1

(γi − 1)
(

Ψ (γi)−Ψ
(∑K

j=1 γj

))
,

which follows by the same reasoning used in equation 7.5. The entropy of a multinomial

distribution is straightforward

Eq [log q(z)] =−
N∑
n=1

K∑
i=1

φn,i log φn,i.
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7.2.2 The Interaction of Syntax and Semantics

We now move on to expanding Eq [log p(z|θ,π)] from Equation 7.7. Rather than

drawing the topic of a word directly from a multinomial, the topic is chosen from the

renormalized point-wise product of two multinomial distributions. In order to handle

the expectation of the log sum introduced by the renormalization, we introduce an

additional variational parameter ωn for each word via a Taylor approximation of the

logarithm to find that Eq [log p(z|θ,π)] =

Eq

[
log

N∏
n=1

θznπzp(n),zn∑K
i θiπzp(n),i

]
= Eq

[
N∑
n=1

log θznπzp(n),zn −
N∑
n=1

log
K∑
i=1

θiπzp(n),i

]

≤
N∑
n=1

Eq

[
log θznπzp(n),zn

]
−

N∑
n=1

Eq

[
ω−1
n

K∑
i=1

θiπzp(n),i

]
+ logωn − 1

=
N∑
n=1

K∑
i=1

φn,i

(
Ψ (γi)−Ψ

(∑K
j=1 γj

))
+

N∑
n=1

K∑
i=1

K∑
j=1

φn,iφp(n),j

(
Ψ (νj,i)−Ψ

(∑K
k=1 νj,k

))
−

(
N∑
n=1

ω−1
n

∑
i=1

∑
j=1

φp(n),j
γiνj,i∑K

k=1 γk
∑K

k=1 νj,k
+ logωn − 1

)
. (7.8)

Combining this with the other expansions for a document gives us an individual
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document’s contribution to the objective function

Ld = log Γ
(∑K

j=1 αD,jτ
∗
)
−

K∑
i=1

log Γ (αD,iτ
∗) +

K∑
i=1

(αD,iτ
∗ − 1)

(
Ψ (γi)−Ψ

(∑K
j=1 γj

))
+

N∑
n=1

K∑
i=1

φn,i

(
Ψ (γi)−Ψ

(∑K
j=1 γj

))
+

N∑
n=1

K∑
i=1

K∑
j=1

φn,iφp(n),j

(
Ψ (νj,i)−Ψ

(∑K
k=1 νj,k

))
−

(
N∑
n=1

ω−1
n

∑
i=1

∑
j=1

φp(n),j
γiνj,i∑K

k=1 γk
∑K

k=1 νj,k
+ logωn − 1

)

+
N∑
n=1

K∑
i=1

φn,i log βi,wd,n

− log Γ
(∑K

j=1 γj

)
+

K∑
i=1

log Γ (γi)−
K∑
i=1

(γi − 1)
(

Ψ (γi)−Ψ
(∑K

j=1 γj

))
−

N∑
n=1

K∑
i=1

φn,i log φn,i. (7.9)

Apart from the terms derived in Equation 7.8, the other terms here are very similar to

the objective function for LDA. The expectation of the log of p(θ), q(θ), p(z), q(z),

and p(w) all appear in the LDA likelihood bound.

7.3 Document-specific Variational Updates

In this section, we derive the updates for all document-specific variational parameters

other than φn, which is updated according to Equation 5.3.

Because we cannot assume that the point-wise product of of πk and θd sums to

one, we introduced a slack term ωn in Equation 7.8; its update is

ωn =
∑
i=1

∑
j=1

φp(n),j
γiνj,i∑K

k=1 γk
∑K

k=1 νj,k
.

Because we couple π and θ, the interaction between these terms in the normalizer

prevents us from solving the optimization for γ and ν explicitly. Instead, for each
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γd we compute the partial derivative with respect to γd,i for each component of the

vector. We then maximize the likelihood bound for each γd. In deriving the gradient,

the following derivative is useful:

f(x) =
N∑
i=1

αi
xi∑N
i=j xj

⇒ ∂f

∂xi
=

αi
∑N

j 6=i xj −
∑N

j 6=i αjxj(∑N
i=1 xi

)2 . (7.10)

This allows us to more easily compute the partial derivative of Equation 7.9 with

respect to γi to be

∂L
∂γi

= Ψ′ (γi)

(
αD,iτ

∗ +
N∑
n=1

φn,i − γi

)
−Ψ′

(∑N
j=1 γj

) K∑
j=1

[
αD,jτ

∗ +
N∑
n=1

φn,j − γj

]

−
N∑
n=1

ω−1
n

K∑
j=1

φp(n),j

νj,i
∑N

k 6=j γk −
∑N

k 6=j νj,kγk(∑N
k=1 γk

)2∑N
k=1 νj,k


7.4 Global Updates

In this section, we expand the terms of Equation 7.7 that were not expanded in Equa-

tion 7.9. First, we note that Eq [log GEM(τ ;α)], because the variational distribution

only puts weight on τ ∗, is just log GEM(τ ∗;α).

We can return to the stick-breaking weights by dividing each τ ∗z by the sum of all

of the indices greater than z (recalling that τ sums to one), Tz ≡ 1−
∑z−1

i=1 τi. Using
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this reformulation, the total likelihood bound, including Equation 7.9 as Ld, is then1

L =
M∑
d

Ld

+ (α− 1) log TK −
K−1∑
z

log Tz

+ log Γ
(∑K

j=1 αT,jτ
∗
)
−

K∑
i=1

log Γ (αT,iτ
∗) +

K∑
i=1

(αT,iτ
∗ − 1)

(
Ψ (νi)−Ψ

(∑K
j=1 νj

))
− log Γ

(∑K
j=1 νj

)
+

K∑
i=1

log Γ (νi)−
K∑
i=1

(νi − 1)
(

Ψ (νi)−Ψ
(∑K

j=1 νj

))
. (7.11)

Variational Dirichlet for Parent-child Transitions

Like the update for γ, the interaction between π and θ in the normalizer prevents us

from solving the optimization for each of the νi explicitly. Differentiating the global

likelihood bound, keeping in mind Equation 7.10, gives

∂L

∂νi,j
= Ψ′ (νi,j)

αP,j +
N∑
n=1

∑
c∈c(n)

φn,iφc,j − νi,j


−Ψ′

(∑K
k=1 νi,k

) K∑
k=1

αP,k +
N∑
n=1

∑
c∈c(n)

φn,iφc,k − νi,k


−

N∑
n

φn,i
∑
c∈c(n)

ω−1
c

γj
∑N

k 6=j νi,k −
∑N

k 6=j νi,kγk(∑N
k=1 νj,k

)2∑N
k=1 γk

.
Each of the νi are then maximized individually using conjugate gradient optimization

after transforming the vector to assure non-negativity.

1For simplicity, we present inference with the per-topic distribution β as a parameter. Inference
for the complete model with β from a Dirichlet distribution requires adding an additional variational
parameter. This is straightforward, but would further complicate the exposition.
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Variational Top-level Weights

The last variational parameter is τ ∗, which is the variational estimate of the top-level

weights τ . Because τ ∗K is implicitly defined as
(

1−
∑K−1

i=0 τ ∗i

)
, τ ∗K appears in the

partial derivative of τ ∗ with respect to τ ∗k for k < K. Similarly, we must also use

implicit differentiation with respect to the stick breaking proportions Tz, defined above.

Taking the derivative and implicitly differentiating τK gives us

∂Lτ∗

∂τ ∗k
=

(
K−1∑
z=k+1

1

Tz

)
− α− 1

TK

+ αD

M∑
d

(
Ψ (γd,k)−Ψ

(∑K
j=1 γd,j

))
− αD

M∑
d

(
Ψ (γd,K)−Ψ

(∑K
j=1 γd,j

))
+ αT

K∑
z

(
Ψ (νz,k)−Ψ

(∑K
j=1 νz,j

))
− αT

K∑
z

(
Ψ (νz,K)−Ψ

(∑K
j=1 νz,j

))
− K [αTΨ (αT τ

∗
k )− αTΨ (αT τ

∗
K)]

− M [αDΨ (αDτ
∗
k )− αDΨ (αDτ

∗
K)] (7.12)

which we use with conjugate gradient optimization after appropriately transforming

the variables to ensure non-negativity.
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